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Preface
Precalculus is intended for college-level Precalculus students. Since
Precalculus courses vary from one institution to the next, we have
attempted to meet the needs of as broad an audience as possible, including
all of the content that might be covered in any particular course. The result
is a comprehensive book that covers more ground than an instructor could
likely cover in a typical one- or two-semester course; but instructors should
find, almost without fail, that the topics they wish to include in their
syllabus are covered in the text. Many chapters of Openstax Precalculus are
suitable for other freshman and sophomore math courses such as College
Algebra and Trigonometry; however, instructors of those courses might
need to supplement or adjust the material. Openstax will also be releasing a
College Algebra and Trigonometry title tailored to the particular scope,
sequence, and pedagogy of those courses.

Welcome to Precalculus, an OpenStax resource. This textbook was written
to increase student access to high-quality learning materials, maintaining
highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to
improve student access to education. Our first openly licensed college
textbook was published in 2012, and our library has since scaled to over 20
books for college and AP courses used by hundreds of thousands of
students. Our adaptive learning technology, designed to improve learning
outcomes through personalized educational paths, is being piloted in
college courses throughout the country. Through our partnerships with
philanthropic foundations and our alliance with other educational resource
organizations, OpenStax is breaking down the most common barriers to
learning and empowering students and instructors to succeed.

About OpenStax Resources



Customization

Precalculus is licensed under a Creative Commons Attribution 4.0
International (CC BY) license, which means that you can distribute, remix,
and build upon the content, as long as you provide attribution to OpenStax
and its content contributors.

Because our books are openly licensed, you are free to use the entire book
or pick and choose the sections that are most relevant to the needs of your
course. Feel free to remix the content by assigning your students certain
chapters and sections in your syllabus, in the order that you prefer. You can
even provide a direct link in your syllabus to the sections in the web view of
your book.

Instructors also have the option of creating a customized version of their
OpenStax book. The custom version can be made available to students in
low-cost print or digital form through their campus bookstore. Visit your
book page on openstax.org for more information.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like
any professional-grade textbook, errors sometimes occur. Since our books
are web based, we can make updates periodically when deemed
pedagogically necessary. If you have a correction to suggest, submit it
through the link on your book page on openstax.org. Subject matter experts
review all errata suggestions. OpenStax is committed to remaining
transparent about all updates, so you will also find a list of past errata
changes on your book page on openstax.org.

Format

You can access this textbook for free in web view or PDF through
openstax.org, and for a low cost in print.



About Precalculus

Precalculus is adaptable and designed to fit the needs of a variety of
precalculus courses. It is a comprehensive text that covers more ground
than a typical one- or two-semester college-level precalculus course. The
content is organized by clearly-defined learning objectives, and includes
worked examples that demonstrate problem-solving approaches in an
accessible way.

Coverage and Scope

Precalculus contains twelve chapters, roughly divided into three groups.

Chapters 1-4 discuss various types of functions, providing a foundation for
the remainder of the course.

Chapter 1: Functions
Chapter 2: Linear Functions
Chapter 3: Polynomial and Rational Functions
Chapter 4: Exponential and Logarithmic Functions

Chapters 5-8 focus on Trigonometry. In Precalculus, we approach
trigonometry by first introducing angles and the unit circle, as opposed to
the right triangle approach more commonly used in college algebra and
trigonometry courses.

Chapter 5: Trigonometric Functions
Chapter 6: Periodic Functions
Chapter 7: Trigonometric Identities and Equations
Chapter 8: Further Applications of Trigonometry

Chapters 9-12 present some advanced precalculus topics that build on
topics introduced in chapters 1-8. Most precalculus syllabi include some of
the topics in these chapters, but few include all. Instructors can select
material as needed from this group of chapters, since they are not
cumulative.



Chapter 9: Systems of Equations and Inequalities
Chapter 10: Analytic Geometry
Chapter 11: Sequences, Probability and Counting Theory
Chapter 12: Introduction to Calculus

All chapters are broken down into multiple sections, the titles of which can
be viewed in the Table of Contents.

Development Overview

Precalculus is the product of a collaborative effort by a group of dedicated
authors, editors, and instructors whose collective passion for this project has
resulted in a text that is remarkably unified in purpose and voice. Special
thanks is due to our Lead Author, Jay Abramson of Arizona State
University, who provided the overall vision for the book and oversaw the
development of each and every chapter, drawing up the initial blueprint,
reading numerous drafts, and assimilating field reviews into actionable
revision plans for our authors and editors.

The first eight chapters are built on the foundation of Precalculus: An
Investigation of Functions by David Lippman and Melonie Rasmussen.
Chapters 9-12 were written and developed from by our expert and highly
experienced author team. All twelve chapters follow a new and innovative
instructional design, and great care has been taken to maintain a consistent
voice from cover to cover. New features have been introduced to flesh out
the instruction, all of the graphics have been redone in a more contemporary
style, and much of the content has been revised, replaced, or supplemented
to bring the text more in line with mainstream approaches to teaching
precalculus.

Accuracy of the Content

We have taken great pains to ensure the validity and accuracy of this text.
Each chapter’s manuscript underwent at least two rounds of review and
revision by a panel of active precalculus instructors. Then, prior to



publication, a separate team of experts checked all text, examples, and
graphics for mathematical accuracy; multiple reviewers were assigned to
each chapter to minimize the chances of any error escaping notice. A third
team of experts was responsible for the accuracy of the Answer Key,
dutifully reworking every solution to eradicate any lingering errors. Finally,
the editorial team conducted a multi-round post-production review to ensure
the integrity of the content in its final form was written and developed after
the Student Edition, has also been rigorously checked for accuracy
following a process similar to that described above. Incidentally, the act of
writing out solutions step-by-step served as yet another round of validation
for the Answer Key in the back of the Student Edition.

Pedagogical Foundations and Features

Learning Objectives

Each chapter is divided into multiple sections (or modules), each of which
is organized around a set of learning objectives. The learning objectives are
listed explicitly at the beginning of each section and are the focal point of
every instructional element.

Narrative text

Narrative text is used to introduce key concepts, terms, and definitions, to
provide real-world context, and to provide transitions between topics and
examples. Throughout this book, we rely on a few basic conventions to
highlight the most important ideas:

Key terms are boldfaced, typically when first introduced and/or when
formally defined.
Key concepts and definitions are called out in a blue box for easy
reference.



Example

Each learning objective is supported by one or more worked examples that
demonstrate the problem-solving approaches that students must master.
Typically, we include multiple Examples for each learning objective in
order to model different approaches to the same type of problem, or to
introduce similar problems of increasing complexity. All told, there are
more than 650 Examples, or an average of about 55 per chapter.

All Examples follow a simple two- or three-part format. First, we pose a
problem or question. Next, we demonstrate the Solution, spelling out the
steps along the way. Finally (for select Examples), we conclude with an
Analysis reflecting on the broader implications of the Solution just shown.

Figures

Precalculus contains more than 2000 figures and illustrations, the vast
majority of which are graphs and diagrams. Art throughout the text adheres
to a clear, understated style, drawing the eye to the most important
information in each figure while minimizing visual distractions. Color
contrast is employed with discretion to distinguish between the different
functions or features of a graph.



Supporting Features

Four small but important features, each marked by a distinctive icon, serve
to support Examples.

A How To is a list of steps necessary to solve a certain type of
problem. A How To typically precedes an Example that proceeds to
demonstrate the steps in action.

A Try It exercise immediately follows an Example or a set of related
Examples, providing the student with an immediate opportunity to
solve a similar problem. In the Online version of the text, students can
click an Answer link directly below the question to check their
understanding. In other versions, answers to the Try-It exercises are
located in the Answer Key.

A Q&A may appear at any point in the narrative, but most often
follows an Example. This feature pre-empts misconceptions by posing
a commonly asked yes/no question, followed by a detailed answer and
explanation.

The Media icon appears at the conclusion of each section, just prior to
the Section Exercises. This icon marks a list of links to online video



tutorials that reinforce the concepts and skills introduced in the section.

While we have selected tutorials that closely align to our learning
objectives, we did not produce these tutorials, nor were they specifically
produced or tailored to accompany Precalculus.

Section Exercises

Each section of every chapter concludes with a well-rounded set of
exercises that can be assigned as homework or used selectively for guided
practice. With over 5900 exercises across the 12 chapters, instructors should
have plenty from which to choose.

Section Exercises are organized by question type, and generally appear in
the following order:

Verbal questions assess conceptual understanding of key terms and
concepts.
Algebraic problems require students to apply algebraic manipulations
demonstrated in the section.
Graphical problems assess students’ ability to interpret or produce a
graph.
Numeric problems require the student to perform calculations or
computations.
Technology problems encourage exploration through use of a graphing
utility, either to visualize or verify algebraic results or to solve
problems via an alternative to the methods demonstrated in the section.
Extensions pose problems more challenging than the Examples
demonstrated in the section. They require students to synthesize
multiple learning objectives or apply critical thinking to solve complex
problems.
Real-World Applications present realistic problem scenarios from
fields such as physics, geology, biology, finance, and the social
sciences.



Chapter Review Features

Each chapter concludes with a review of the most important takeaways, as
well as additional practice problems that students can use to prepare for
exams.

Key Terms provides a formal definition for each bold-faced term in
the chapter.
Key Equations presents a compilation of formulas, theorems, and
standard-form equations.
Key Concepts summarizes the most important ideas introduced in
each section, linking back to the relevant Example(s) in case students
need to review.
Chapter Review Exercises include 40-80 practice problems that recall
the most important concepts from each section.
Practice Test includes 25-50 problems assessing the most important
learning objectives from the chapter. Note that the practice test is not
organized by section, and may be more heavily weighted toward
cumulative objectives as opposed to the foundational objectives
covered in the opening sections.

Additional Resources

Student and Instructor Resources

We’ve compiled additional resources for both students and instructors,
including Getting Started Guides, instructor solution manual, and
PowerPoint slides. Instructor resources require a verified instructor account,
which can be requested on your openstax.org log-in. Take advantage of
these resources to supplement your OpenStax book.

Partner Resources



OpenStax Partners are our allies in the mission to make high-quality
learning materials affordable and accessible to students and instructors
everywhere. Their tools integrate seamlessly with our OpenStax titles at a
low cost. To access the partner resources for your text, visit your book page
on openstax.org.
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Functions and Function Notation
In this section, you will:

Determine whether a relation represents a function.
Find the value of a function.
Determine whether a function is one-to-one.
Use the vertical line test to identify functions.
Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing
child increases with time. In each case, one quantity depends on another. There is a relationship between the two
quantities that we can describe, analyze, and use to make predictions. In this section, we will analyze such
relationships.

Determining Whether a Relation Represents a Function

A relation is a set of ordered pairs. The set of the first components of each ordered pair is called the domain and
the set of the second components of each ordered pair is called the range. Consider the following set of ordered
pairs. The first numbers in each pair are the first five natural numbers. The second number in each pair is twice
that of the first.
Equation:

{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)}

The domain is {1, 2, 3, 4, 5}. The range is {2, 4, 6, 8, 10}.

Note that each value in the domain is also known as an input value, or independent variable, and is often labeled
with the lowercase letterx. Each value in the range is also known as an output value, or dependent variable, and
is often labeled lowercase letter y.

A function f is a relation that assigns a single value in the range to each value in the domain. In other words, no x-
values are repeated. For our example that relates the first five natural numbers to numbers double their values, this
relation is a function because each element in the domain, {1, 2, 3, 4, 5}, is paired with exactly one element in
the range, {2, 4, 6, 8, 10}.

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers.
It would appear as
Equation:

{(odd, 1), (even, 2), (odd, 3), (even, 4), (odd, 5)}

Notice that each element in the domain, {even, odd} is not paired with exactly one element in the range, 
{1, 2, 3, 4, 5}. For example, the term “odd” corresponds to three values from the domain, {1, 3, 5} and the term
“even” corresponds to two values from the range, {2, 4}. This violates the definition of a function, so this relation
is not a function.

[link] compares relations that are functions and not functions.



Note:
Function
A function is a relation in which each possible input value leads to exactly one output value. We say “the output
is a function of the input.”
The input values make up the domain, and the output values make up the range.

Note:
Given a relationship between two quantities, determine whether the relationship is a function.

1. Identify the input values.
2. Identify the output values.
3. If each input value leads to only one output value, classify the relationship as a function. If any input value

leads to two or more outputs, do not classify the relationship as a function.

Example:
Exercise:

Problem:
Determining If Menu Price Lists Are Functions

The coffee shop menu, shown in [link] consists of items and their prices.

a. Is price a function of the item?
b. Is the item a function of the price?

(a) This relationship is a function because each input is associated with a single output. Note that input q and
r both give outputn. (b) This relationship is also a function. In this case, each input is associated with a

single output. (c) This relationship is not a function because input q is associated with two different outputs.



Solution:

a. Let’s begin by considering the input as the items on the menu. The output values are then the prices. See
[link].

Each item on the menu has only one price, so the price is a function of the item.
b. Two items on the menu have the same price. If we consider the prices to be the input values and the

items to be the output, then the same input value could have more than one output associated with it.
See [link].

Therefore, the item is a not a function of price.

Example:
Exercise:

Problem:
Determining If Class Grade Rules Are Functions

In a particular math class, the overall percent grade corresponds to a grade point average. Is grade point
average a function of the percent grade? Is the percent grade a function of the grade point average? [link]
shows a possible rule for assigning grade points.



Percent grade 0–
56

57–
61

62–
66

67–
71

72–
77

78–
86

87–
91

92–
100

Grade point
average 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Solution:

For any percent grade earned, there is an associated grade point average, so the grade point average is a
function of the percent grade. In other words, if we input the percent grade, the output is a specific grade
point average.

In the grading system given, there is a range of percent grades that correspond to the same grade point
average. For example, students who receive a grade point average of 3.0 could have a variety of percent
grades ranging from 78 all the way to 86. Thus, percent grade is not a function of grade point average.

Note:
Exercise:

Problem:[link][footnote] lists the five greatest baseball players of all time in order of rank.
http://www.baseball-almanac.com/legendary/lisn100.shtml. Accessed 3/24/2014.

Player Rank

Babe Ruth 1

Willie Mays 2

Ty Cobb 3

Walter Johnson 4

Hank Aaron 5

a. Is the rank a function of the player name?
b. Is the player name a function of the rank?

Solution:

a. yes; b. yes. (Note: If two players had been tied for, say, 4th place, then the name would not have been a
function of rank.)

Using Function Notation



Once we determine that a relationship is a function, we need to display and define the functional relationships so
that we can understand and use them, and sometimes also so that we can program them into computers. There are
various ways of representing functions. A standard function notation is one representation that facilitates working
with functions.

To represent “height is a function of age,” we start by identifying the descriptive variables h for height and a for
age. The letters f, g,andh are often used to represent functions just as we use x, y,andz to represent numbers and 
A, B, and C to represent sets.
Equation:

Remember, we can use any letter to name the function; the notationh (a) shows us thath depends on a. The value
amust be put into the functionh to get a result. The parentheses indicate that age is input into the function; they
do not indicate multiplication.

We can also give an algebraic expression as the input to a function. For example f (a+ b)means “first add a and
b, and the result is the input for the function f.” The operations must be performed in this order to obtain the
correct result.

Note:
Function Notation
The notation y = f (x) defines a function named f. This is read as ‵‵y is a function ofx.′′The letterx represents
the input value, or independent variable. The letter y, or f (x), represents the output value, or dependent variable.

Example:
Exercise:

Problem:
Using Function Notation for Days in a Month

Use function notation to represent a function whose input is the name of a month and output is the number of
days in that month. Assume that the domain does not include leap years.

Solution:

The number of days in a month is a function of the name of the month, so if we name the function f, we
write days = f(month) or d = f(m). The name of the month is the input to a “rule” that associates a
specific number (the output) with each input.

For example, f (March) = 31, because March has 31 days. The notation d = f (m) reminds us that the
number of days, d (the output), is dependent on the name of the month,m (the input).

Analysis

h is f of a We name the function f;  height is a function of age.

h = f(a) We use parentheses to indicate the function input. 

f(a) We name the function f;  the expression is read as “f of a.”



Note that the inputs to a function do not have to be numbers; function inputs can be names of people, labels of
geometric objects, or any other element that determines some kind of output. However, most of the functions we
will work with in this book will have numbers as inputs and outputs.

Example:
Exercise:

Problem:
Interpreting Function Notation

A functionN = f (y) gives the number of police officers,N , in a town in year y. What does
f (2005) = 300 represent?

Solution:

When we read f (2005) = 300, we see that the input year is 2005. The value for the output, the number of
police officers (N), is 300. Remember,N = f (y). The statement f (2005) = 300 tells us that in the year
2005 there were 300 police officers in the town.

Note:
Exercise:

Problem:Use function notation to express the weight of a pig in pounds as a function of its age in days d.

Solution:

w = f(d)

Note:
Instead of a notation such as y = f(x ), could we use the same symbol for the output as for the function,
such as y = y(x ), meaning “y is a function of x?”
Yes, this is often done, especially in applied subjects that use higher math, such as physics and engineering.
However, in exploring math itself we like to maintain a distinction between a function such as f, which is a rule
or procedure, and the output ywe get by applying f to a particular inputx. This is why we usually use notation
such as y = f (x),P = W (d), and so on.

Representing Functions Using Tables

A common method of representing functions is in the form of a table. The table rows or columns display the
corresponding input and output values. In some cases, these values represent all we know about the relationship;
other times, the table provides a few select examples from a more complete relationship.

[link] lists the input number of each month (January = 1, February = 2, and so on) and the output value of the
number of days in that month. This information represents all we know about the months and days for a given year
(that is not a leap year). Note that, in this table, we define a days-in-a-month function f whereD = f (m)
identifies months by an integer rather than by name.



Month
number,m
(input)

1 2 3 4 5 6 7 8 9 10 11 12

Days in
month,D
(output)

31 28 31 30 31 30 31 31 30 31 30 31

[link] defines a functionQ = g (n). Remember, this notation tells us that g is the name of the function that takes
the inputn and gives the outputQ .

n 1 2 3 4 5

Q 8 6 7 6 8

[link] displays the age of children in years and their corresponding heights. This table displays just some of the
data available for the heights and ages of children. We can see right away that this table does not represent a
function because the same input value, 5 years, has two different output values, 40 in. and 42 in.

Age in years, a (input) 5 5 6 7 8 9 10

Height in inches, h (output) 40 42 44 47 50 52 54

Note:
Given a table of input and output values, determine whether the table represents a function.

1. Identify the input and output values.
2. Check to see if each input value is paired with only one output value. If so, the table represents a function.

Example:
Exercise:

Problem:
Identifying Tables that Represent Functions

Which table, [link], [link], or [link], represents a function (if any)?



Input Output

2 1

5 3

8 6

Input Output

–3 5

0 1

4 5

Input Output

1 0

5 2

5 4

Solution:

[link] and [link] define functions. In both, each input value corresponds to exactly one output value. [link]
does not define a function because the input value of 5 corresponds to two different output values.

When a table represents a function, corresponding input and output values can also be specified using
function notation.

The function represented by [link] can be represented by writing
Equation:

f(2) = 1, f(5) = 3, and f(8) = 6

Similarly, the statements
Equation:

g (−3) = 5, g (0) = 1, and g (4) = 5



represent the function in [link].

[link] cannot be expressed in a similar way because it does not represent a function.

Note:
Exercise:

Problem:Does [link] represent a function?

Input Output

1 10

2 100

3 1000

Solution:

yes

Finding Input and Output Values of a Function

When we know an input value and want to determine the corresponding output value for a function, we evaluate
the function. Evaluating will always produce one result because each input value of a function corresponds to
exactly one output value.

When we know an output value and want to determine the input values that would produce that output value, we
set the output equal to the function’s formula and solve for the input. Solving can produce more than one solution
because different input values can produce the same output value.

Evaluation of Functions in Algebraic Forms

When we have a function in formula form, it is usually a simple matter to evaluate the function. For example, the
function f (x) = 5 − 3x2 can be evaluated by squaring the input value, multiplying by 3, and then subtracting the
product from 5.

Note:
Given the formula for a function, evaluate.

1. Replace the input variable in the formula with the value provided.
2. Calculate the result.



Example:
Exercise:

Problem:
Evaluating Functions at Specific Values

Evaluate f (x) = x2 + 3x− 4 at

a. 2
b. a
c. a+ h

d. f(a+h)−f(a)
h

Solution:

Replace thex  in the function with each specified value.

a. Because the input value is a number, 2, we can use simple algebra to simplify.
Equation:

b. In this case, the input value is a letter so we cannot simplify the answer any further.
Equation:

f (a) = a2 + 3a− 4

c. With an input value of a+ h, we must use the distributive property.
Equation:

d. In this case, we apply the input values to the function more than once, and then perform algebraic
operations on the result. We already found that
Equation:

f (a+ h) = a2 + 2ah+ h2 + 3a+ 3h− 4

and we know that
Equation:

f (a) = a2 + 3a− 4

Now we combine the results and simplify.
Equation:

f (2) = 22 + 3 (2) − 4

= 4 + 6 − 4

= 6

f(a+ h) = (a+ h)2 + 3(a+ h) − 4

= a2 + 2ah+ h2 + 3a+ 3h− 4



Example:
Exercise:

Problem:
Evaluating Functions

Given the functionh (p) = p2 + 2p, evaluateh (4).

Solution:

To evaluateh (4), we substitute the value 4 for the input variable p in the given function.
Equation:

Therefore, for an input of 4, we have an output of 24.

Note:
Exercise:

Problem:Given the function g (m) = √m− 4, evaluate g (5).

Solution:

g (5) = 1

Example:
Exercise:

Problem:
Solving Functions

Given the functionh (p) = p2 + 2p, solve forh (p) = 3.

Solution:

f(a+h)−f(a)
h

=
(a2+2ah+h2+3a+3h−4)−(a2+3a−4)

h

                          = 2ah+h2+3h
h

                          =
h(2a+h+3)

h
Factor out h.

                          = 2a+ h+ 3 Simplify.

 h(p) = p2 + 2p

 h(4) = (4)2 + 2(4)

         = 16 + 8

         = 24



Equation:

If (p+ 3) (p− 1) = 0, either (p+ 3) = 0 or (p− 1) = 0 (or both of them equal 0). We will set each factor
equal to 0 and solve for p in each case.
Equation:

This gives us two solutions. The outputh (p) = 3when the input is either p = 1 or p = −3.We can also
verify by graphing as in [link]. The graph verifies thath (1) = h (−3) = 3 andh (4) = 24.

Note:
Exercise:

Problem:Given the function g (m) = √m− 4, solve g (m) = 2.

Solution:

m = 8

Evaluating Functions Expressed in Formulas

                 h(p) = 3

           p2 + 2p = 3 Substitute the original function h(p) = p2 + 2p.

     p2 + 2p− 3 = 0 Subtract 3 from each side.

 (p+ 3)(p− 1) = 0 Factor.

(p+ 3) = 0, p = −3

(p− 1) = 0, p = 1



Some functions are defined by mathematical rules or procedures expressed in equation form. If it is possible to
express the function output with a formula involving the input quantity, then we can define a function in algebraic
form. For example, the equation 2n+ 6p = 12 expresses a functional relationship betweenn  and p. We can
rewrite it to decide if p is a function ofn.

Note:
Given a function in equation form, write its algebraic formula.

1. Solve the equation to isolate the output variable on one side of the equal sign, with the other side as an
expression that involves only the input variable.

2. Use all the usual algebraic methods for solving equations, such as adding or subtracting the same quantity to
or from both sides, or multiplying or dividing both sides of the equation by the same quantity.

Example:
Exercise:

Problem:
Finding an Equation of a Function

Express the relationship 2n+ 6p = 12 as a function p = f (n), if possible.

Solution:

To express the relationship in this form, we need to be able to write the relationship where p is a function of
n, which means writing it as p = [expression involvingn].
Equation:

Therefore, p as a function ofn is written as
Equation:

p = f (n) = 2 −
1

3
n

Analysis

It is important to note that not every relationship expressed by an equation can also be expressed as a function
with a formula.

Example:
Exercise:

Problem:
Expressing the Equation of a Circle as a Function

2n+ 6p = 12

6p = 12 − 2n Subtract 2n from both sides.

p = 12−2n
6 Divide both sides by 6 and simplify.

p = 12
6

− 2n
6

p = 2 − 1
3
n



Does the equationx2 + y2 = 1 represent a function withx as input and y as output? If so, express the
relationship as a function y = f (x).

Solution:

First we subtractx2 from both sides.
Equation:

y2 = 1 − x2

We now try to solve for y in this equation.
Equation:

We get two outputs corresponding to the same input, so this relationship cannot be represented as a single
function y = f (x).

Note:
Exercise:

Problem:Ifx− 8y3 = 0, express y as a function ofx.

Solution:

y = f (x) =
3√x

2

Note:
Are there relationships expressed by an equation that do represent a function but which still cannot be
represented by an algebraic formula?
Yes, this can happen. For example, given the equationx = y+ 2y, if we want to express y as a function ofx,
there is no simple algebraic formula involving onlyx that equals y. However, eachx does determine a unique
value for y, and there are mathematical procedures by which y can be found to any desired accuracy. In this case,
we say that the equation gives an implicit (implied) rule for y as a function ofx, even though the formula cannot
be written explicitly.

Evaluating a Function Given in Tabular Form

As we saw above, we can represent functions in tables. Conversely, we can use information in tables to write
functions, and we can evaluate functions using the tables. For example, how well do our pets recall the fond
memories we share with them? There is an urban legend that a goldfish has a memory of 3 seconds, but this is just
a myth. Goldfish can remember up to 3 months, while the beta fish has a memory of up to 5 months. And while a
puppy’s memory span is no longer than 30 seconds, the adult dog can remember for 5 minutes. This is meager
compared to a cat, whose memory span lasts for 16 hours.

y = ±√1 − x2

   = +√1 − x2 and  − √1 − x2



The function that relates the type of pet to the duration of its memory span is more easily visualized with the use of
a table. See [link].[footnote]
http://www.kgbanswers.com/how-long-is-a-dogs-memory-span/4221590. Accessed 3/24/2014.

Pet Memory span in hours

Puppy 0.008

Adult dog 0.083

Cat 16

Goldfish 2160

Beta fish 3600

At times, evaluating a function in table form may be more useful than using equations. Here let us call the function
P . The domain of the function is the type of pet and the range is a real number representing the number of hours
the pet’s memory span lasts. We can evaluate the functionP at the input value of “goldfish.” We would write 
P(goldfish) = 2160. Notice that, to evaluate the function in table form, we identify the input value and the
corresponding output value from the pertinent row of the table. The tabular form for functionP seems ideally
suited to this function, more so than writing it in paragraph or function form.

Note:
Given a function represented by a table, identify specific output and input values.

1. Find the given input in the row (or column) of input values.
2. Identify the corresponding output value paired with that input value.
3. Find the given output values in the row (or column) of output values, noting every time that output value

appears.
4. Identify the input value(s) corresponding to the given output value.

Example:
Exercise:

Problem:
Evaluating and Solving a Tabular Function

Using [link],

a. Evaluate g (3).
b. Solve g (n) = 6.



n 1 2 3 4 5

g (n) 8 6 7 6 8

Solution:

a. Evaluating g(3) means determining the output value of the function g for the input value of n = 3. The
table output value corresponding to n = 3 is 7, so g(3) = 7.

b. Solving g(n) = 6 means identifying the input values, n,that produce an output value of 6. [link] shows
two solutions: 2 and 4.

n 1 2 3 4 5

g (n) 8 6 7 6 8

When we input 2 into the function g, our output is 6. When we input 4 into the function g, our output is also
6.

Note:
Exercise:

Problem:Using [link], evaluate g (1).

Solution:

g (1) = 8

Finding Function Values from a Graph

Evaluating a function using a graph also requires finding the corresponding output value for a given input value,
only in this case, we find the output value by looking at the graph. Solving a function equation using a graph
requires finding all instances of the given output value on the graph and observing the corresponding input
value(s).

Example:
Exercise:

Problem:
Reading Function Values from a Graph

Given the graph in [link],

a. Evaluate f (2).



b. Solve f (x) = 4.

Solution:

a. To evaluate f (2), locate the point on the curve wherex = 2, then read the y-coordinate of that point.
The point has coordinates (2, 1), so f (2) = 1. See [link].

b. To solve f (x) = 4,we find the output value 4 on the vertical axis. Moving horizontally along the line
y = 4, we locate two points of the curve with output value 4: (−1, 4) and (3, 4). These points represent
the two solutions to f (x) = 4: −1 or 3.This means f (−1) = 4 and f (3) = 4, or when the input is−1
or3, the output is 4. See [link].



Note:
Exercise:

Problem:Using [link], solve f (x) = 1.

Solution:

x = 0 orx = 2

Determining Whether a Function is One-to-One

Some functions have a given output value that corresponds to two or more input values. For example, in the stock
chart shown in [link] at the beginning of this chapter, the stock price was $1000 on five different dates, meaning
that there were five different input values that all resulted in the same output value of $1000.

However, some functions have only one input value for each output value, as well as having only one output for
each input. We call these functions one-to-one functions. As an example, consider a school that uses only letter
grades and decimal equivalents, as listed in [link].

Letter grade Grade point average

A 4.0

B 3.0

https://cnx.org/content/m49299#Figure_01_00_001


Letter grade Grade point average

C 2.0

D 1.0

This grading system represents a one-to-one function, because each letter input yields one particular grade point
average output and each grade point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple functions sketched in [link](a) and [link](b). The
function in part (a) shows a relationship that is not a one-to-one function because inputs q and r both give output
n. The function in part (b) shows a relationship that is a one-to-one function because each input is associated with
a single output.

Note:
One-to-One Function
A one-to-one function is a function in which each output value corresponds to exactly one input value.

Example:
Exercise:

Problem:
Determining Whether a Relationship Is a One-to-One Function

Is the area of a circle a function of its radius? If yes, is the function one-to-one?

Solution:

A circle of radius r has a unique area measure given byA = πr2,so for any input, r, there is only one output,
A. The area is a function of radius r.

If the function is one-to-one, the output value, the area, must correspond to a unique input value, the radius.
Any area measureA is given by the formulaA = πr2. Because areas and radii are positive numbers, there is

exactly one solution:√ A
π
.So the area of a circle is a one-to-one function of the circle’s radius.

Note:
Exercise:

Problem:

a. Is a balance a function of the bank account number?
b. Is a bank account number a function of the balance?
c. Is a balance a one-to-one function of the bank account number?

Solution:

a. yes, because each bank account has a single balance at any given time; b. no, because several bank account
numbers may have the same balance; c. no, because the same output may correspond to more than one input.



Note:
Exercise:

Problem:Evaluate the following:

a. If each percent grade earned in a course translates to one letter grade, is the letter grade a function of the
percent grade?

b. If so, is the function one-to-one?

Solution:

a. Yes, letter grade is a function of percent grade;
b. No, it is not one-to-one. There are 100 different percent numbers we could get but only about five

possible letter grades, so there cannot be only one percent number that corresponds to each letter grade.

Using the Vertical Line Test

As we have seen in some examples above, we can represent a function using a graph. Graphs display a great many
input-output pairs in a small space. The visual information they provide often makes relationships easier to
understand. By convention, graphs are typically constructed with the input values along the horizontal axis and the
output values along the vertical axis.

The most common graphs name the input valuex and the output value y, and we say y is a function ofx, or
y = f (x)when the function is named f. The graph of the function is the set of all points (x, y) in the plane that
satisfies the equationy = f (x). If the function is defined for only a few input values, then the graph of the
function is only a few points, where the x-coordinate of each point is an input value and the y-coordinate of each
point is the corresponding output value. For example, the black dots on the graph in [link] tell us that f (0) = 2
and f (6) = 1.However, the set of all points (x, y) satisfying y = f (x) is a curve. The curve shown includes
(0, 2) and (6, 1) because the curve passes through those points.



The vertical line test can be used to determine whether a graph represents a function. If we can draw any vertical
line that intersects a graph more than once, then the graph does not define a function because a function has only
one output value for each input value. See [link].

Note:
Given a graph, use the vertical line test to determine if the graph represents a function.

1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
2. If there is any such line, determine that the graph does not represent a function.

Example:
Exercise:

Problem:
Applying the Vertical Line Test

Which of the graphs in [link] represent(s) a function y = f (x)?

Solution:

If any vertical line intersects a graph more than once, the relation represented by the graph is not a function.
Notice that any vertical line would pass through only one point of the two graphs shown in parts (a) and (b)



of [link]. From this we can conclude that these two graphs represent functions. The third graph does not
represent a function because, at most x-values, a vertical line would intersect the graph at more than one
point, as shown in [link].

Note:
Exercise:

Problem:Does the graph in [link] represent a function?

Solution:

yes

Using the Horizontal Line Test



Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is
to use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line intersects the graph
more than once, then the graph does not represent a one-to-one function.

Note:
Given a graph of a function, use the horizontal line test to determine if the graph represents a one-to-one
function.

1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.
2. If there is any such line, determine that the function is not one-to-one.

Example:
Exercise:

Problem:
Applying the Horizontal Line Test

Consider the functions shown in [link](a) and [link](b). Are either of the functions one-to-one?

Solution:

The function in [link](a) is not one-to-one. The horizontal line shown in [link] intersects the graph of the
function at two points (and we can even find horizontal lines that intersect it at three points.)

The function in [link](b) is one-to-one. Any horizontal line will intersect a diagonal line at most once.

Note:
Exercise:

Problem: Is the graph shown in [link] one-to-one?



Solution:

No, because it does not pass the horizontal line test.

Identifying Basic Toolkit Functions

In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic
formulas, and how to solve problems with them. When learning to read, we start with the alphabet. When learning
to do arithmetic, we start with numbers. When working with functions, it is similarly helpful to have a base set of
building-block elements. We call these our “toolkit functions,” which form a set of basic named functions for
which we know the graph, formula, and special properties. Some of these functions are programmed to individual
buttons on many calculators. For these definitions we will usex as the input variable and y = f (x) as the output
variable.

We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations
frequently throughout this book. It will be very helpful if we can recognize these toolkit functions and their
features quickly by name, formula, graph, and basic table properties. The graphs and sample table values are
included with each function shown in [link].

Toolkit Functions

Name Function Graph

Constant f (x) = c, where c is a
constant



Toolkit Functions

Name Function Graph

Identity f (x) = x

Absolute value f (x) = |x|

Quadratic f (x) = x2



Toolkit Functions

Name Function Graph

Cubic f (x) = x3

Reciprocal f (x) = 1
x

Reciprocal
squared

f (x) = 1
x2



Toolkit Functions

Name Function Graph

Square root f (x) = √x

Cube root f (x) = 3√x

Note:
Access the following online resources for additional instruction and practice with functions.

Determine if a Relation is a Function
Vertical Line Test
Introduction to Functions
Vertical Line Test on Graph
One-to-one Functions
Graphs as One-to-one Functions

Key Equations

http://openstaxcollege.org/l/relationfunction
http://openstaxcollege.org/l/vertlinetest
http://openstaxcollege.org/l/introtofunction
http://openstaxcollege.org/l/vertlinegraph
http://openstaxcollege.org/l/onetoone
http://openstaxcollege.org/l/graphonetoone


Constant function f (x) = c,where c is a constant

Identity function f (x) = x

Absolute value function f (x) = |x|

Quadratic function f (x) = x2

Cubic function f (x) = x3

Reciprocal function f (x) = 1
x

Reciprocal squared function f (x) = 1
x2

Square root function f (x) = √x

Cube root function f (x) = 3√x

Key Concepts

A relation is a set of ordered pairs. A function is a specific type of relation in which each domain value, or
input, leads to exactly one range value, or output. See [link] and [link].
Function notation is a shorthand method for relating the input to the output in the form y = f (x). See [link]
and [link].
In tabular form, a function can be represented by rows or columns that relate to input and output values. See
[link].
To evaluate a function, we determine an output value for a corresponding input value. Algebraic forms of a
function can be evaluated by replacing the input variable with a given value. See [link] and [link].
To solve for a specific function value, we determine the input values that yield the specific output value. See
[link].
An algebraic form of a function can be written from an equation. See [link] and [link].
Input and output values of a function can be identified from a table. See [link].
Relating input values to output values on a graph is another way to evaluate a function. See [link].
A function is one-to-one if each output value corresponds to only one input value. See [link].
A graph represents a function if any vertical line drawn on the graph intersects the graph at no more than one
point. See [link].
The graph of a one-to-one function passes the horizontal line test. See [link].

Section Exercises

Verbal

Exercise:

Problem: What is the difference between a relation and a function?

Solution:

A relation is a set of ordered pairs. A function is a special kind of relation in which no two ordered pairs have
the same first coordinate.

Exercise:



Problem: What is the difference between the input and the output of a function?

Exercise:

Problem: Why does the vertical line test tell us whether the graph of a relation represents a function?

Solution:

When a vertical line intersects the graph of a relation more than once, that indicates that for that input there is
more than one output. At any particular input value, there can be only one output if the relation is to be a
function.

Exercise:

Problem: How can you determine if a relation is a one-to-one function?

Exercise:

Problem: Why does the horizontal line test tell us whether the graph of a function is one-to-one?

Solution:

When a horizontal line intersects the graph of a function more than once, that indicates that for that output
there is more than one input. A function is one-to-one if each output corresponds to only one input.

Algebraic

For the following exercises, determine whether the relation represents a function.
Exercise:

Problem: {(a, b),   (c, d),   (a, c)}

Exercise:

Problem: {(a, b), (b, c), (c, c)}

Solution:

function

For the following exercises, determine whether the relation represents y as a function ofx.
Exercise:

Problem: 5x+ 2y = 10

Exercise:

Problem: y = x2

Solution:

function

Exercise:



Problem: x = y2

Exercise:

Problem: 3x2 + y = 14

Solution:

function

Exercise:

Problem: 2x+ y2 = 6

Exercise:

Problem: y = −2x2 + 40x

Solution:

function

Exercise:

Problem: y = 1
x

Exercise:

Problem: x = 3y+5
7y−1

Solution:

function

Exercise:

Problem: x = √1 − y2

Exercise:

Problem: y = 3x+5
7x−1

Solution:

function

Exercise:

Problem: x2 + y2 = 9

Exercise:

Problem: 2xy = 1

Solution:



function

Exercise:

Problem: x = y3

Exercise:

Problem: y = x3

Solution:

function

Exercise:

Problem: y = √1 − x2

Exercise:

Problem: x = ±√1 − y

Solution:

function

Exercise:

Problem: y = ±√1 − x

Exercise:

Problem: y2 = x2

Solution:

not a function

Exercise:

Problem: y3 = x2

For the following exercises, evaluate the function f at the indicated values f(−3), f(2), f(−a),−f(a), f(a+ h).
Exercise:

Problem: f(x) = 2x− 5

Solution:

Exercise:

Problem: f(x) = −5x2 + 2x− 1

Exercise:

f(−3) = −11; f(2) = −1; f(−a) = −2a− 5; −f(a) = −2a+ 5; f(a+ h) = 2a+ 2h− 5



Problem: f(x) = √2 − x+ 5

Solution:

√2 − a− h+ 5

Exercise:

Problem: f(x) = 6x−1
5x+2

Exercise:

Problem: f(x) = |x− 1| − |x+ 1|

Solution:

Exercise:

Problem: Given the function g(x) = 5 − x2, evaluate g(x+h)−g(x)
h

, h ≠ 0.

Exercise:

Problem: Given the function g(x) = x2 + 2x, evaluate g(x)−g(a)
x−a

, x ≠ a.

Solution:

g(x)−g(a)
x−a

= x+ a+ 2, x ≠ a

Exercise:

Problem: Given the function k(t) = 2t− 1 :

a. Evaluate k(2).
b. Solve k(t) = 7.

Exercise:

Problem: Given the function f(x) = 8 − 3x :

a. Evaluate f(−2).
b. Solve f(x) = −1.

Solution:

a. f(−2) = 14; b.x = 3

Exercise:

Problem: Given the function p(c) = c2 + c :

f(−3) = √5 + 5; f(2) = 5; f(−a) = √2 + a+ 5; −f(a) = −√2 − a− 5; f(a+ h) =

f(−3) = 2; f(2) = 1 − 3 = −2; f(−a) = |−a− 1| − |−a+ 1|; −f(a) = − |a− 1| + |a+ 1|;  f(a+



a. Evaluate p(−3).
b. Solve p(c) = 2.

Exercise:

Problem: Given the function f(x) = x2 − 3x :

a. Evaluate f(5).
b. Solve f(x) = 4.

Solution:

a. f(5) = 10; b.x = −1 or x = 4

Exercise:

Problem: Given the function f(x) = √x+ 2 :

a. Evaluate f(7).
b. Solve f(x) = 4.

Exercise:

Problem: Consider the relationship 3r+ 2t = 18.

a. Write the relationship as a function r = f(t).
b. Evaluate f(−3).
c. Solve f(t) = 2.

Solution:

a. f(t) = 6 − 2
3 t; b. f(−3) = 8; c. t = 6

Graphical

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.
Exercise:

Problem:



Exercise:

Problem:

Solution:

not a function

Exercise:

Problem:



Exercise:

Problem:

Solution:

function

Exercise:

Problem:

Exercise:



Problem:

Solution:

function

Exercise:

Problem:

Exercise:

Problem:



Solution:

function

Exercise:

Problem:

Exercise:

Problem:



Solution:

function

Exercise:

Problem:

Exercise:

Problem:

Solution:

function

Exercise:

Problem: Given the following graph,

Evaluate f(−1).



Solve for f(x) = 3.

Exercise:

Problem: Given the following graph,

Evaluate f(0).
Solve for f(x) = −3.

Solution:

a. f(0) = 1; b. f(x) = −3, x = −2 or x = 2

Exercise:

Problem: Given the following graph,

Evaluate f(4).
Solve for f(x) = 1.



For the following exercises, determine if the given graph is a one-to-one function.
Exercise:

Problem:

Solution:

not a function so it is also not a one-to-one function

Exercise:

Problem:

Exercise:

Problem:



Solution:

one-to- one function

Exercise:

Problem:

Exercise:

Problem:

Solution:

function, but not one-to-one

Numeric

For the following exercises, determine whether the relation represents a function.
Exercise:



Problem: {(−1,−1), (−2,−2), (−3,−3)}

Exercise:

Problem: {(3, 4), (4, 5), (5, 6)}

Solution:

function

Exercise:

Problem: {(2, 5), (7, 11), (15, 8), (7, 9)}

For the following exercises, determine if the relation represented in table form represents y as a function ofx.
Exercise:

Problem:

x 5 10 15

y 3 8 14

Solution:

function

Exercise:

Problem:

x 5 10 15

y 3 8 8

Exercise:

Problem:

x 5 10 10



y 3 8 14

Solution:

not a function

For the following exercises, use the function f represented in [link].

x f (x)

0 74

1 28

2 1

3 53

4 56

5 3

6 36

7 45

8 14

9 47

Exercise:

Problem: Evaluate f(3).

Exercise:

Problem: Solve f(x) = 1.

Solution:

f(x) = 1, x = 2

For the following exercises, evaluate the function f at the valuesf (−2), f(−1), f(0), f(1),and f(2).
Exercise:

Problem: f (x) = 4 − 2x

Exercise:



Problem: f (x) = 8 − 3x

Solution:

Exercise:

Problem: f (x) = 8x2 − 7x+ 3

Exercise:

Problem: f (x) = 3 +√x+ 3

Solution:

Exercise:

Problem: f(x) = x−2
x+3

Exercise:

Problem: f (x) = 3x

Solution:

For the following exercises, evaluate the expressions, given functionsf, g,andh :

f(x) = 3x− 2
g(x) = 5 − x2

h(x) = −2x2 + 3x− 1

Exercise:

Problem: 3f (1) − 4g (−2)

Exercise:

Problem:f ( 7
3 )− h (−2)

Solution:

20

Technology

For the following exercises, graph y = x2 on the given viewing window. Determine the corresponding range for
each viewing window. Show each graph.
Exercise:

f(−2) = 14; f(−1) = 11; f(0) = 8; f(1) = 5; f(2) = 2

f(−2) = 4; f(−1) = 4.414; f(0) = 4.732; f(1) = 4.5; f(2) = 5.236

f(−2) = 1
9
; f(−1) = 1

3
; f(0) = 1; f(1) = 3; f(2) = 9



Problem: [−0.1,  0.1]

Exercise:

Problem:[−10,  10]

Solution:

[0,  100]

Exercise:

Problem: [−100, 100]

For the following exercises, graph y = x3 on the given viewing window. Determine the corresponding range for
each viewing window. Show each graph.
Exercise:

Problem: [−0.1,  0.1]

Solution:

[−0.001,  0.001]

Exercise:



Problem: [−10,  10]

Exercise:

Problem:[−100,  100]

Solution:

[−1, 000, 000,  1,000,000]

For the following exercises, graph y = √x on the given viewing window. Determine the corresponding range for
each viewing window. Show each graph.
Exercise:

Problem: [0,  0.01]

Exercise:

Problem: [0,  100]

Solution:

[0,  10]

Exercise:



Problem: [0,  10,000]

For the following exercises, graph y = 3√x on the given viewing window. Determine the corresponding range for
each viewing window. Show each graph.
Exercise:

Problem: [−0.001, 0.001]

Solution:

[−0.1, 0.1]

Exercise:

Problem: [−1000, 1000]

Exercise:

Problem:[−1,000,000, 1,000,000]

Solution:

[−100,  100]



Real-World Applications

Exercise:

Problem:

The amount of garbage,G, produced by a city with population p is given byG = f (p). G is measured in
tons per week, and p is measured in thousands of people.

a. The town of Tola has a population of 40,000 and produces 13 tons of garbage each week. Express this
information in terms of the function f.

b. Explain the meaning of the statement f (5) = 2.

Exercise:

Problem:

The number of cubic yards of dirt,D, needed to cover a garden with area a square feet is given byD = g (a).

a. A garden with area 5000 ft  requires 50 yd  of dirt. Express this information in terms of the function g.
b. Explain the meaning of the statement g (100) = 1.

Solution:

a. g(5000) = 50; b. The number of cubic yards of dirt required for a garden of 100 square feet is 1.

Exercise:

Problem:

Let f (t) be the number of ducks in a lake t years after 1990. Explain the meaning of each statement:

a. f (5) = 30
b. f (10) = 40

Exercise:

2 3



Problem:

Leth (t) be the height above ground, in feet, of a rocket t seconds after launching. Explain the meaning of
each statement:

a. h (1) = 200
b. h (2) = 350

Solution:

a. The height of a rocket above ground after 1 second is 200 ft. b. the height of a rocket above ground after 2
seconds is 350 ft.

Exercise:

Problem: Show that the function f (x) = 3(x− 5)2 + 7 is not one-to-one.

Glossary

dependent variable
an output variable

domain
the set of all possible input values for a relation

function
a relation in which each input value yields a unique output value

horizontal line test
a method of testing whether a function is one-to-one by determining whether any horizontal line intersects the
graph more than once

independent variable
an input variable

input
each object or value in a domain that relates to another object or value by a relationship known as a function

one-to-one function
a function for which each value of the output is associated with a unique input value

output
each object or value in the range that is produced when an input value is entered into a function

range
the set of output values that result from the input values in a relation

relation
a set of ordered pairs

vertical line test
a method of testing whether a graph represents a function by determining whether a vertical line intersects the
graph no more than once



Domain and Range
In this section, you will:

Find the domain of a function defined by an equation.
Graph piecewise-defined functions.

If you’re in the mood for a scary movie, you may want to check out one of
the five most popular horror movies of all time—I am Legend, Hannibal,
The Ring, The Grudge, and The Conjuring. [link] shows the amount, in
dollars, each of those movies grossed when they were released as well as
the ticket sales for horror movies in general by year. Notice that we can use
the data to create a function of the amount each movie earned or the total
ticket sales for all horror movies by year. In creating various functions using
the data, we can identify different independent and dependent variables, and
we can analyze the data and the functions to determine the domain and
range. In this section, we will investigate methods for determining the
domain and range of functions such as these.

Finding the Domain of a Function Defined by an Equation

Based on data compiled by www.the-numbers.com.[footnote]
The Numbers: Where Data and the Movie Business Meet. “Box Office

History for Horror Movies.” http://www.the-
numbers.com/market/genre/Horror. Accessed 3/24/2014



In Functions and Function Notation, we were introduced to the concepts of
domain and range. In this section, we will practice determining domains
and ranges for specific functions. Keep in mind that, in determining
domains and ranges, we need to consider what is physically possible or
meaningful in real-world examples, such as tickets sales and year in the
horror movie example above. We also need to consider what is
mathematically permitted. For example, we cannot include any input value
that leads us to take an even root of a negative number if the domain and
range consist of real numbers. Or in a function expressed as a formula, we
cannot include any input value in the domain that would lead us to divide
by 0.

We can visualize the domain as a “holding area” that contains “raw
materials” for a “function machine” and the range as another “holding area”
for the machine’s products. See [link].

We can write the domain and range in interval notation, which uses values
within brackets to describe a set of numbers. In interval notation, we use a
square bracket [ when the set includes the endpoint and a parenthesis ( to
indicate that the endpoint is either not included or the interval is unbounded.
For example, if a person has $100 to spend, he or she would need to express
the interval that is more than 0 and less than or equal to 100 and write
(0,  100]. We will discuss interval notation in greater detail later.

Let’s turn our attention to finding the domain of a function whose equation
is provided. Oftentimes, finding the domain of such functions involves



remembering three different forms. First, if the function has no denominator
or an even root, consider whether the domain could be all real numbers.
Second, if there is a denominator in the function’s equation, exclude values
in the domain that force the denominator to be zero. Third, if there is an
even root, consider excluding values that would make the radicand
negative.

Before we begin, let us review the conventions of interval notation:

The smallest term from the interval is written first.
The largest term in the interval is written second, following a comma.
Parentheses, ( or ), are used to signify that an endpoint is not included,
called exclusive.
Brackets, [ or ], are used to indicate that an endpoint is included, called
inclusive.

See [link] for a summary of interval notation.



Example:
Exercise:

Problem:
Finding the Domain of a Function as a Set of Ordered Pairs

Find the domain of the following function:
{(2,  10), (3,  10), (4,  20), (5,  30), (6,  40)}.

Solution:



First identify the input values. The input value is the first coordinate
in an ordered pair. There are no restrictions, as the ordered pairs are
simply listed. The domain is the set of the first coordinates of the
ordered pairs.
Equation:

{2, 3, 4, 5, 6}

Note:
Exercise:

Problem:Find the domain of the function:

{(−5, 4), (0, 0), (5,−4), (10,−8), (15,−12)}

Solution:

{−5, 0, 5, 10, 15}

Note:
Given a function written in equation form, find the domain.

1. Identify the input values.
2. Identify any restrictions on the input and exclude those values from

the domain.
3. Write the domain in interval form, if possible.

Example:
Exercise:



Problem:
Finding the Domain of a Function

Find the domain of the function f(x) = x2 − 1.

Solution:

The input value, shown by the variable x in the equation, is squared
and then the result is lowered by one. Any real number may be
squared and then be lowered by one, so there are no restrictions on the
domain of this function. The domain is the set of real numbers.

In interval form, the domain of f is (−∞,∞).

Note:
Exercise:

Problem:Find the domain of the function: f(x) = 5 − x + x3.

Solution:

(−∞,∞)

Note:
Given a function written in an equation form that includes a fraction,
find the domain.

1. Identify the input values.
2. Identify any restrictions on the input. If there is a denominator in the

function’s formula, set the denominator equal to zero and solve for x .
If the function’s formula contains an even root, set the radicand
greater than or equal to 0, and then solve.



3. Write the domain in interval form, making sure to exclude any
restricted values from the domain.

Example:
Exercise:

Problem:
Finding the Domain of a Function Involving a Denominator

Find the domain of the function f(x) = x+1
2−x

.

Solution:

When there is a denominator, we want to include only values of the
input that do not force the denominator to be zero. So, we will set the
denominator equal to 0 and solve for x.
Equation:

Now, we will exclude 2 from the domain. The answers are all real
numbers where x < 2 or x > 2.We can use a symbol known as the
union,∪,to combine the two sets. In interval notation, we write the
solution:(−∞, 2) ∪ (2,∞).

2 − x = 0

− x = −2

x = 2



In interval form, the domain of f is (−∞, 2) ∪ (2,∞).

Note:
Exercise:

Problem:Find the domain of the function: f(x) = 1+4x
2x−1 .

Solution:

(−∞, 1
2
) ∪ ( 1

2
,∞)

Note:
Given a function written in equation form including an even root, find
the domain.

1. Identify the input values.
2. Since there is an even root, exclude any real numbers that result in a

negative number in the radicand. Set the radicand greater than or
equal to zero and solve for x.

3. The solution(s) are the domain of the function. If possible, write the
answer in interval form.

Example:
Exercise:

Problem:
Finding the Domain of a Function with an Even Root

Find the domain of the function f(x) = √7 − x.



Solution:

When there is an even root in the formula, we exclude any real
numbers that result in a negative number in the radicand.

Set the radicand greater than or equal to zero and solve for x.
Equation:

Now, we will exclude any number greater than 7 from the domain.
The answers are all real numbers less than or equal to 7, or (−∞, 7].

Note:
Exercise:

Problem:Find the domain of the function f(x) = √5 + 2x.

Solution:

[− 5
2 ,∞)

Note:
Can there be functions in which the domain and range do not intersect
at all?
Yes. For example, the function f(x) = − 1

√x
has the set of all positive real

numbers as its domain but the set of all negative real numbers as its range.
As a more extreme example, a function’s inputs and outputs can be

7 − x ≥ 0

− x ≥ −7

x ≤ 7



completely different categories (for example, names of weekdays as inputs
and numbers as outputs, as on an attendance chart), in such cases the
domain and range have no elements in common.

Using Notations to Specify Domain and Range

In the previous examples, we used inequalities and lists to describe the
domain of functions. We can also use inequalities, or other statements that
might define sets of values or data, to describe the behavior of the variable
in set-builder notation. For example, {x|10 ≤ x < 30} describes the
behavior of x in set-builder notation. The braces {} are read as “the set of,”
and the vertical bar | is read as “such that,” so we would read
{x|10 ≤ x < 30} as “the set of x-values such that 10 is less than or equal

to x, and x is less than 30.”

[link] compares inequality notation, set-builder notation, and interval
notation.



To combine two intervals using inequality notation or set-builder notation,
we use the word “or.” As we saw in earlier examples, we use the union
symbol,∪,to combine two unconnected intervals. For example, the union of
the sets{2, 3, 5}  and {4, 6}  is the set {2, 3, 4, 5, 6}. It is the set of all
elements that belong to one or the other (or both) of the original two sets.
For sets with a finite number of elements like these, the elements do not
have to be listed in ascending order of numerical value. If the original two
sets have some elements in common, those elements should be listed only
once in the union set. For sets of real numbers on intervals, another example
of a union is
Equation:

{x|   |x| ≥ 3} = (−∞,−3] ∪ [3,∞)

Note:



Set-Builder Notation and Interval Notation
Set-builder notation is a method of specifying a set of elements that
satisfy a certain condition. It takes the form{x| statement about x}
which is read as, “the set of all x such that the statement about x is true.”
For example,
Equation:

{x|4 < x ≤ 12}

Interval notation is a way of describing sets that include all real numbers
between a lower limit that may or may not be included and an upper limit
that may or may not be included. The endpoint values are listed between
brackets or parentheses. A square bracket indicates inclusion in the set, and
a parenthesis indicates exclusion from the set. For example,
Equation:

(4, 12]

Note:
Given a line graph, describe the set of values using interval notation.

1. Identify the intervals to be included in the set by determining where
the heavy line overlays the real line.

2. At the left end of each interval, use [ with each end value to be
included in the set (solid dot) or ( for each excluded end value (open
dot).

3. At the right end of each interval, use ] with each end value to be
included in the set (filled dot) or ) for each excluded end value (open
dot).

4. Use the union symbol ∪ to combine all intervals into one set.

Example:



Exercise:

Problem:
Describing Sets on the Real-Number Line

Describe the intervals of values shown in [link] using inequality
notation, set-builder notation, and interval notation.

Solution:

To describe the values, x, included in the intervals shown, we would
say, “x is a real number greater than or equal to 1 and less than or
equal to 3, or a real number greater than 5.”

Inequality 1 ≤ x ≤ 3orx > 5

Set-builder notation {x|1 ≤ x ≤ 3orx > 5}

Interval notation [1, 3] ∪ (5,∞)

Remember that, when writing or reading interval notation, using a
square bracket means the boundary is included in the set. Using a
parenthesis means the boundary is not included in the set.

Note:
Exercise:

Problem:Given [link], specify the graphed set in



a. words
b. set-builder notation
c. interval notation

Solution:

a. values that are less than or equal to –2, or values that are greater
than or equal to –1 and less than 3;

b. {x|x ≤ −2or − 1 ≤ x < 3} ;
c. (−∞,−2] ∪ [−1, 3)

Finding Domain and Range from Graphs

Another way to identify the domain and range of functions is by using
graphs. Because the domain refers to the set of possible input values, the
domain of a graph consists of all the input values shown on the x-axis. The
range is the set of possible output values, which are shown on the y-axis.
Keep in mind that if the graph continues beyond the portion of the graph we
can see, the domain and range may be greater than the visible values. See
[link].



We can observe that the graph extends horizontally from−5 to the right
without bound, so the domain is [−5,∞). The vertical extent of the graph
is all range values 5 and below, so the range is (−∞, 5]. Note that the
domain and range are always written from smaller to larger values, or from
left to right for domain, and from the bottom of the graph to the top of the
graph for range.



Example:
Exercise:

Problem:
Finding Domain and Range from a Graph

Find the domain and range of the function f  whose graph is shown in
[link].

Solution:

We can observe that the horizontal extent of the graph is –3 to 1, so
the domain of f  is (−3, 1].

The vertical extent of the graph is 0 to –4, so the range is [−4, 0]. See
[link].



Example:
Exercise:

Problem:
Finding Domain and Range from a Graph of Oil Production

Find the domain and range of the function f whose graph is shown in
[link].



Solution:

The input quantity along the horizontal axis is “years,” which we
represent with the variable t for time. The output quantity is
“thousands of barrels of oil per day,” which we represent with the
variable b for barrels. The graph may continue to the left and right
beyond what is viewed, but based on the portion of the graph that is
visible, we can determine the domain as 1973 ≤ t ≤ 2008 and the
range as approximately 180 ≤ b ≤ 2010.

In interval notation, the domain is [1973, 2008], and the range is
about [180, 2010]. For the domain and the range, we approximate the
smallest and largest values since they do not fall exactly on the grid
lines.

(credit: modification of work by the U.S. Energy
Information Administration)[footnote]

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?
n=PET&s=MCRFPAK2&f=A.



Note:
Exercise:

Problem:

Given [link], identify the domain and range using interval notation.

Solution:

domain =[1950,2002] range = [47,000,000,89,000,000]

Note:
Can a function’s domain and range be the same?
Yes. For example, the domain and range of the cube root function are both
the set of all real numbers.

Finding Domains and Ranges of the Toolkit Functions



We will now return to our set of toolkit functions to determine the domain
and range of each.

For the constant function f(x) = c, the domain
consists of all real numbers; there are no restrictions on

the input. The only output value is the constant c, so
the range is the set {c} that contains this single

element. In interval notation, this is written as [c, c], the
interval that both begins and ends with c.



For the identity function f(x) = x, there is no
restriction on x. Both the domain and range are the set

of all real numbers.



For the absolute value function f(x) = |x|, there is
no restriction on x. However, because absolute value is

defined as a distance from 0, the output can only be
greater than or equal to 0.



For the quadratic function f(x) = x2, the domain is
all real numbers since the horizontal extent of the graph
is the whole real number line. Because the graph does

not include any negative values for the range, the range
is only nonnegative real numbers.



For the cubic function f(x) = x3, the domain is all
real numbers because the horizontal extent of the graph
is the whole real number line. The same applies to the
vertical extent of the graph, so the domain and range

include all real numbers.



For the reciprocal function f(x) = 1
x
, we cannot

divide by 0, so we must exclude 0 from the domain.
Further, 1 divided by any value can never be 0, so the
range also will not include 0. In set-builder notation,

we could also write{x| x ≠ 0},the set of all real
numbers that are not zero.



For the reciprocal squared function f(x) = 1
x2 ,we

cannot divide by 0, so we must exclude 0 from the
domain. There is also no x that can give an output of 0,
so 0 is excluded from the range as well. Note that the
output of this function is always positive due to the

square in the denominator, so the range includes only
positive numbers.



For the square root function f(x) = √x, we cannot
take the square root of a negative real number, so the
domain must be 0 or greater. The range also excludes

negative numbers because the square root of a positive
number x is defined to be positive, even though the

square of the negative number −√x also gives us x.



Note:
Given the formula for a function, determine the domain and range.

1. Exclude from the domain any input values that result in division by
zero.

2. Exclude from the domain any input values that have nonreal (or
undefined) number outputs.

For the cube root function f(x) = 3√x, the domain
and range include all real numbers. Note that there is

no problem taking a cube root, or any odd-integer root,
of a negative number, and the resulting output is

negative (it is an odd function).



3. Use the valid input values to determine the range of the output values.
4. Look at the function graph and table values to confirm the actual

function behavior.

Example:
Exercise:

Problem:
Finding the Domain and Range Using Toolkit Functions

Find the domain and range of f(x) = 2x3 − x.

Solution:

There are no restrictions on the domain, as any real number may be
cubed and then subtracted from the result.

The domain is (−∞,∞) and the range is also (−∞,∞).

Example:
Exercise:

Problem:
Finding the Domain and Range

Find the domain and range of f(x) = 2
x+1 .

Solution:

We cannot evaluate the function at−1 because division by zero is
undefined. The domain is (−∞,−1) ∪ (−1,∞). Because the
function is never zero, we exclude 0 from the range. The range is
(−∞, 0) ∪ (0,∞).



Example:
Exercise:

Problem:
Finding the Domain and Range

Find the domain and range of f(x) = 2√x + 4.

Solution:

We cannot take the square root of a negative number, so the value
inside the radical must be nonnegative.
Equation:

x + 4 ≥ 0 when x ≥ −4

The domain of f (x) is [−4,∞).

We then find the range. We know that f (−4) = 0, and the function
value increases as x increases without any upper limit. We conclude
that the range of f is [0,∞).

Analysis

[link] represents the function f.



Note:
Exercise:

Problem:Find the domain and range of f (x) = −√2 − x.

Solution:

domain: (−∞, 2]; range: (−∞, 0]

Graphing Piecewise-Defined Functions

Sometimes, we come across a function that requires more than one formula
in order to obtain the given output. For example, in the toolkit functions, we
introduced the absolute value function f(x) = |x|. With a domain of all
real numbers and a range of values greater than or equal to 0, absolute value
can be defined as the magnitude, or modulus, of a real number value



regardless of sign. It is the distance from 0 on the number line. All of these
definitions require the output to be greater than or equal to 0.

If we input 0, or a positive value, the output is the same as the input.
Equation:

f(x) = x if x ≥ 0

If we input a negative value, the output is the opposite of the input.
Equation:

f(x) = −x if x < 0

Because this requires two different processes or pieces, the absolute value
function is an example of a piecewise function. A piecewise function is a
function in which more than one formula is used to define the output over
different pieces of the domain.

We use piecewise functions to describe situations in which a rule or
relationship changes as the input value crosses certain “boundaries.” For
example, we often encounter situations in business for which the cost per
piece of a certain item is discounted once the number ordered exceeds a
certain value. Tax brackets are another real-world example of piecewise
functions. For example, consider a simple tax system in which incomes up
to $10,000 are taxed at 10%, and any additional income is taxed at 20%.
The tax on a total income S would be 0.1S if S ≤ $10,000 and
$1000 + 0.2(S − $10,000) if S > $10,000.

Note:
Piecewise Function
A piecewise function is a function in which more than one formula is used
to define the output. Each formula has its own domain, and the domain of
the function is the union of all these smaller domains. We notate this idea
like this:



Equation:

f(x) =

In piecewise notation, the absolute value function is
Equation:

|x| = {

Note:
Given a piecewise function, write the formula and identify the domain
for each interval.

1. Identify the intervals for which different rules apply.
2. Determine formulas that describe how to calculate an output from an

input in each interval.
3. Use braces and if-statements to write the function.

Example:
Exercise:

Problem:
Writing a Piecewise Function

A museum charges $5 per person for a guided tour with a group of 1
to 9 people or a fixed $50 fee for a group of 10 or more people. Write
a function relating the number of people, n, to the cost, C.

Solution:

formula 1     if x is in domain 1

formula 2     if x is in domain 2

formula 3     if x is in domain 3

x    if  x ≥ 0

−x  if  x < 0



Two different formulas will be needed. For n-values under 10,
C = 5n. For values of n that are 10 or greater, C = 50.
Equation:

C(n) = {

Analysis

The function is represented in [link]. The graph is a diagonal line from
n = 0 to n = 10 and a constant after that. In this example, the two
formulas agree at the meeting point where n = 10, but not all piecewise
functions have this property.

Example:
Exercise:

Problem:
Working with a Piecewise Function

A cell phone company uses the function below to determine the cost,
C, in dollars for g gigabytes of data transfer.
Equation:

5n if 0 < n < 10

50 if n ≥ 10



C(g) = {

Find the cost of using 1.5 gigabytes of data and the cost of using 4
gigabytes of data.

Solution:

To find the cost of using 1.5 gigabytes of data, C(1.5), we first look
to see which part of the domain our input falls in. Because 1.5 is less
than 2, we use the first formula.
Equation:

C(1.5) = $25

To find the cost of using 4 gigabytes of data, C(4), we see that our
input of 4 is greater than 2, so we use the second formula.
Equation:

C(4) = 25 + 10(4 − 2) = $45

Analysis

The function is represented in [link]. We can see where the function
changes from a constant to a shifted and stretched identity at g = 2.We
plot the graphs for the different formulas on a common set of axes, making
sure each formula is applied on its proper domain.

25 if 0 < g < 2

25 + 10(g − 2) if g ≥ 2



Note:
Given a piecewise function, sketch a graph.

1. Indicate on the x-axis the boundaries defined by the intervals on each
piece of the domain.

2. For each piece of the domain, graph on that interval using the
corresponding equation pertaining to that piece. Do not graph two
functions over one interval because it would violate the criteria of a
function.

Example:
Exercise:

Problem:
Graphing a Piecewise Function

Sketch a graph of the function.
Equation:



f(x) =

Solution:

Each of the component functions is from our library of toolkit
functions, so we know their shapes. We can imagine graphing each
function and then limiting the graph to the indicated domain. At the
endpoints of the domain, we draw open circles to indicate where the
endpoint is not included because of a less-than or greater-than
inequality; we draw a closed circle where the endpoint is included
because of a less-than-or-equal-to or greater-than-or-equal-to
inequality.

[link] shows the three components of the piecewise function graphed
on separate coordinate systems.

Now that we have sketched each piece individually, we combine them
in the same coordinate plane. See [link].

x2 if x ≤ 1

3 if 1 < x ≤ 2

x if x > 2

(a) f (x) = x2 if  x ≤ 1; (b) f (x) = 3 if 1< x ≤ 2; (c)
f (x) = x  if x > 2



Analysis

Note that the graph does pass the vertical line test even at x = 1 and x = 2
because the points (1, 3) and (2, 2) are not part of the graph of the
function, though (1, 1) and (2, 3) are.

Note:
Exercise:

Problem:Graph the following piecewise function.
Equation:

f(x) =

Solution:

x3 if x < −1

−2 if −1 < x < 4

√x if x > 4



Note:
Can more than one formula from a piecewise function be applied to a
value in the domain?
No. Each value corresponds to one equation in a piecewise formula.

Note:
Access these online resources for additional instruction and practice with
domain and range.

Domain and Range of Square Root Functions
Determining Domain and Range
Find Domain and Range Given the Graph
Find Domain and Range Given a Table

http://openstaxcollege.org/l/domainsqroot
http://openstaxcollege.org/l/determinedomain
http://openstaxcollege.org/l/drgraph
http://openstaxcollege.org/l/drtable


Find Domain and Range Given Points on a Coordinate Plane

Key Concepts

The domain of a function includes all real input values that would not
cause us to attempt an undefined mathematical operation, such as
dividing by zero or taking the square root of a negative number.
The domain of a function can be determined by listing the input values
of a set of ordered pairs. See [link].
The domain of a function can also be determined by identifying the
input values of a function written as an equation. See [link], [link], and
[link].
Interval values represented on a number line can be described using
inequality notation, set-builder notation, and interval notation. See
[link].
For many functions, the domain and range can be determined from a
graph. See [link] and [link].
An understanding of toolkit functions can be used to find the domain
and range of related functions. See [link], [link], and [link].
A piecewise function is described by more than one formula. See
[link] and [link].
A piecewise function can be graphed using each algebraic formula on
its assigned subdomain. See [link].

Section Exercises

Verbal

Exercise:

Problem: Why does the domain differ for different functions?

Solution:

http://openstaxcollege.org/l/drcoordinate


The domain of a function depends upon what values of the
independent variable make the function undefined or imaginary.

Exercise:

Problem: 

How do we determine the domain of a function defined by an
equation?

Exercise:

Problem: 

Explain why the domain of f(x) = 3√x is different from the domain of
f(x) = √x.

Solution:

There is no restriction on x for f(x) = 3√x because you can take the
cube root of any real number. So the domain is all real numbers,
(−∞,∞). When dealing with the set of real numbers, you cannot
take the square root of negative numbers. So x-values are restricted for
f(x) = √x to nonnegative numbers and the domain is [0,∞).

Exercise:

Problem: 

When describing sets of numbers using interval notation, when do you
use a parenthesis and when do you use a bracket?

Exercise:

Problem: How do you graph a piecewise function?

Solution:

Graph each formula of the piecewise function over its corresponding
domain. Use the same scale for the x-axis and y-axis for each graph.
Indicate inclusive endpoints with a solid circle and exclusive endpoints



with an open circle. Use an arrow to indicate −∞ or  ∞. Combine
the graphs to find the graph of the piecewise function.

Algebraic

For the following exercises, find the domain of each function using interval
notation.
Exercise:

Problem: f(x) = −2x(x − 1)(x − 2)

Exercise:

Problem: f(x) = 5 − 2x2

Solution:

(−∞,∞)

Exercise:

Problem: f (x) = 3√x − 2

Exercise:

Problem: f (x) = 3 −√6 − 2x

Solution:

(−∞, 3]

Exercise:

Problem: f(x) = √4 − 3x

Exercise:



Problem: 

Solution:

(−∞,∞)

Exercise:

Problem: f(x) = 3√1 − 2x

Exercise:

Problem: f(x) = 3√x − 1

Solution:

(−∞,∞)

Exercise:

Problem: f(x) = 9
x−6

Exercise:

Problem: f (x) = 3x+1
4x+2

Solution:

(−∞,− 1
2 ) ∪ (− 1

2 ,∞)

Exercise:

Problem: f (x) =
√x+4
x−4

Exercise:

f(x) = √x2 + 4



Problem: f(x) = x−3
x2+9x−22

Solution:

(−∞,−11) ∪ (−11, 2) ∪ (2,∞)

Exercise:

Problem: f(x) = 1
x2−x−6

Exercise:

Problem: f(x) = 2x3−250
x2−2x−15

Solution:

(−∞,−3) ∪ (−3, 5) ∪ (5,∞)

Exercise:

Problem: 5
√x−3

Exercise:

Problem: 2x+1
√5−x

Solution:

(−∞, 5)

Exercise:

Problem: f(x) = √x−4
√x−6

Exercise:



Problem: f(x) = √x−6
√x−4

Solution:

[6,∞)

Exercise:

Problem: f(x) = x
x

Exercise:

Problem: f(x) = x2−9x
x2−81

Solution:

(−∞,−9) ∪ (−9, 9) ∪ (9,∞)

Exercise:

Problem: Find the domain of the function f(x) = √2x3 − 50x by:

a. using algebra.
b. graphing the function in the radicand and determining intervals on

the x-axis for which the radicand is nonnegative.

Graphical

For the following exercises, write the domain and range of each function
using interval notation.
Exercise:

Problem:



Solution:

domain: (2, 8], range [6, 8)

Exercise:

Problem:

Exercise:

Problem:



Solution:

domain: [−4,  4], range: [0,  2]

Exercise:

Problem:

Exercise:

Problem:



Solution:

domain: [−5,  3), range: [0, 2]

Exercise:

Problem:

Exercise:

Problem:



Solution:

domain: (−∞, 1], range: [0,∞)

Exercise:

Problem:

Exercise:

Problem:



Solution:

domain: [−6,− 1
6 ] ∪ [ 1

6 , 6]; range: [−6,− 1
6 ] ∪ [ 1

6 , 6]

Exercise:

Problem:



Exercise:

Problem:



Solution:

domain: [−3,  ∞); range: [0,∞)

For the following exercises, sketch a graph of the piecewise function. Write
the domain in interval notation.
Exercise:

Problem: f(x) = {

Exercise:

Problem: f(x) = {

Solution:

x + 1 if x < −2

−2x − 3 if x ≥ −2

2x − 1 if x < 1

1 + x if x ≥ 1



domain: (−∞,∞)

Exercise:

Problem: f(x) = {

Exercise:

Problem: f (x) = {

Solution:

domain: (−∞,∞)

x + 1 if x < 0

x − 1 if x > 0

3 if x < 0

√x if x ≥ 0



Exercise:

Problem: f(x) = {

Exercise:

Problem: f(x) = {

Solution:

domain: (−∞,∞)

Exercise:

Problem: f (x) = {

Exercise:

Problem: f(x) = {

x2      if x < 0

1 − x  if x > 0

x2

x + 2

if x < 0

if x ≥ 0

x + 1 if x < 1

x3 if x ≥ 1

|x|

1

if x < 2

if x ≥ 2



Solution:

domain: (−∞,∞)

Numeric

For the following exercises, given each function f,evaluate 
f(−3), f(−2), f(−1), and f(0).
Exercise:

Problem: f(x) = {

Exercise:

Problem: f(x) = {

Solution:

Exercise:

x + 1 if x < −2

−2x − 3 if x ≥ −2

1 if x ≤ −3

0 if x > −3

f(−3) = 1; f(−2) = 0; f(−1) = 0; f(0) = 0



Problem: f(x) = {

For the following exercises, given each function f, evaluate
f(−1), f(0), f(2), and f(4).
Exercise:

Problem: f(x) = {

Solution:

Exercise:

Problem: f (x) = {

Exercise:

Problem: f (x) =

Solution:

For the following exercises, write the domain for the piecewise function in
interval notation.
Exercise:

−2x2 + 3 if x ≤ −1

5x − 7 if x > −1

7x + 3 if x < 0

7x + 6 if x ≥ 0

f(−1) = −4; f(0) = 6; f(2) = 20; f(4) = 34

x2 − 2 if x < 2

4 + |x − 5| if x ≥ 2

5x if x < 0

3 if 0 ≤ x ≤ 3

x2 if x > 3

f(−1) = −5; f(0) = 3; f(2) = 3; f(4) = 16



Problem: f(x) = {

Exercise:

Problem: f(x) = {

Solution:

domain: (−∞, 1) ∪ (1,∞)

Exercise:

Problem: f(x) = {

Technology

Exercise:

Problem: 

Graph y = 1
x2 on the viewing window [−0.5,−0.1] and [0.1, 0.5].

Determine the corresponding range for the viewing window. Show the
graphs.

Solution:

x + 1  if x < −2

−2x − 3 if x ≥ −2

x2 − 2  if x < 1

−x2 + 2 if x > 1

2x − 3

−3x2

if x < 0

if x ≥ 2



window: [−0.5,−0.1]; range: [4,  100]



window: [0.1,  0.5]; range: [4,  100]

Exercise:

Problem: 

Graph y = 1
x

on the viewing window [−0.5,−0.1] and [0.1,  0.5].
Determine the corresponding range for the viewing window. Show the
graphs.

Extension

Exercise:



Problem: 

Suppose the range of a function f is [−5,  8]. What is the range of
|f(x)|?

Solution:

[0,  8]

Exercise:

Problem: 

Create a function in which the range is all nonnegative real numbers.

Exercise:

Problem: Create a function in which the domain is x > 2.

Solution:

Many answers. One function is f(x) = 1
√x−2

.

Real-World Applications

Exercise:

Problem: 

The height h of a projectile is a function of the time t it is in the air.
The height in feet for t seconds is given by the function
h(t) = −16t2 + 96t. What is the domain of the function? What does
the domain mean in the context of the problem?

Solution:



The domain is [0,  6]; it takes 6 seconds for the projectile to leave the
ground and return to the ground

Exercise:

Problem: 

The cost in dollars of making x items is given by the function
C(x) = 10x + 500.

a. The fixed cost is determined when zero items are produced. Find
the fixed cost for this item.

b. What is the cost of making 25 items?
c. Suppose the maximum cost allowed is $1500. What are the

domain and range of the cost function, C(x)?

Glossary

interval notation
a method of describing a set that includes all numbers between a lower
limit and an upper limit; the lower and upper values are listed between
brackets or parentheses, a square bracket indicating inclusion in the
set, and a parenthesis indicating exclusion

piecewise function
a function in which more than one formula is used to define the output

set-builder notation
a method of describing a set by a rule that all of its members obey; it
takes the form {x| statement about x}



Rates of Change and Behavior of Graphs
In this section, you will:

Find the average rate of change of a function.
Use a graph to determine where a function is increasing, decreasing, or constant.
Use a graph to locate local maxima and local minima.
Use a graph to locate the absolute maximum and absolute minimum.

Gasoline costs have experienced some wild fluctuations over the last several decades. [link]
[footnote] lists the average cost, in dollars, of a gallon of gasoline for the years 2005–2012.
The cost of gasoline can be considered as a function of year.
http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524. Accessed 3/5/2014.

y 2005 2006 2007 2008 2009 2010 2011 2012

C (y) 2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

If we were interested only in how the gasoline prices changed between 2005 and 2012, we
could compute that the cost per gallon had increased from $2.31 to $3.68, an increase of
$1.37. While this is interesting, it might be more useful to look at how much the price
changed per year. In this section, we will investigate changes such as these.

Finding the Average Rate of Change of a Function

The price change per year is a rate of change because it describes how an output quantity
changes relative to the change in the input quantity. We can see that the price of gasoline in
[link] did not change by the same amount each year, so the rate of change was not constant.
If we use only the beginning and ending data, we would be finding the average rate of
change over the specified period of time. To find the average rate of change, we divide the
change in the output value by the change in the input value.
Equation:

                                      =
Δy

Δx

                                      =
y2−y1
x2−x1

                                      =
f(x2)−f(x1)

x2−x1

Average rate of change = Change in output
Change in input



The Greek letterΔ (delta) signifies the change in a quantity; we read the ratio as “delta-y over
delta-x” or “the change in y divided by the change inx.” Occasionally we writeΔf instead of
Δy, which still represents the change in the function’s output value resulting from a change
to its input value. It does not mean we are changing the function into some other function.

In our example, the gasoline price increased by $1.37 from 2005 to 2012. Over 7 years, the
average rate of change was
Equation:

Δy

Δx
=

$1.37

7 years
≈ 0.196 dollars per year

On average, the price of gas increased by about 19.6¢ each year.

Other examples of rates of change include:

A population of rats increasing by 40 rats per week
A car traveling 68 miles per hour (distance traveled changes by 68 miles each hour as
time passes)
A car driving 27 miles per gallon (distance traveled changes by 27 miles for each
gallon)
The current through an electrical circuit increasing by 0.125 amperes for every volt of
increased voltage
The amount of money in a college account decreasing by $4,000 per quarter

Note:
Rate of Change
A rate of change describes how an output quantity changes relative to the change in the
input quantity. The units on a rate of change are “output units per input units.”
The average rate of change between two input values is the total change of the function
values (output values) divided by the change in the input values.
Equation:

Δy

Δx
=

f (x2) − f (x1)

x2 − x1

Note:
Given the value of a function at different points, calculate the average rate of change of
a function for the interval between two valuesx1 andx2.

1. Calculate the difference y2 − y1 = Δy.



2. Calculate the difference x2 − x1 = Δx.
3. Find the ratio Δy

Δx
.

Example:
Exercise:

Problem:
Computing an Average Rate of Change

Using the data in [link], find the average rate of change of the price of gasoline between
2007 and 2009.

Solution:

In 2007, the price of gasoline was $2.84. In 2009, the cost was $2.41. The average rate
of change is
Equation:

Analysis

Note that a decrease is expressed by a negative change or “negative increase.” A rate of
change is negative when the output decreases as the input increases or when the output
increases as the input decreases.

Note:
Exercise:

Problem:

Using the data in [link], find the average rate of change between 2005 and 2010.

Solution:

$2.84−$2.31
5 years = $0.53

5 years = $0.106 per year.

Δy

Δx
= y2−y1

x2−x1

= $2.41−$2.84
2009−2007

= −$0.43
2 years

= −$0.22 per year



Example:
Exercise:

Problem:
Computing Average Rate of Change from a Graph

Given the function g (t) shown in [link], find the average rate of change on the interval
[−1, 2].

Solution:

At t = −1, [link] shows g (−1) = 4. At t = 2,the graph shows g (2) = 1.

The horizontal changeΔt = 3 is shown by the red arrow, and the vertical change 
Δg(t) = −3 is shown by the turquoise arrow. The output changes by –3 while the
input changes by 3, giving an average rate of change of
Equation:

1 − 4

2 − (−1)
=

−3

3
= −1



Analysis

Note that the order we choose is very important. If, for example, we use y2−y1
x1−x2

, we will not
get the correct answer. Decide which point will be 1 and which point will be 2, and keep the
coordinates fixed as (x1, y1) and (x2, y2).

Example:
Exercise:

Problem:
Computing Average Rate of Change from a Table

After picking up a friend who lives 10 miles away, Anna records her distance from
home over time. The values are shown in [link]. Find her average speed over the first 6
hours.

t (hours) 0 1 2 3 4 5 6 7

D(t) (miles) 10 55 90 153 214 240 292 300

Solution:

Here, the average speed is the average rate of change. She traveled 282 miles in 6
hours, for an average speed of
Equation:

The average speed is 47 miles per hour.

Analysis

Because the speed is not constant, the average speed depends on the interval chosen. For the
interval [2,3], the average speed is 63 miles per hour.

= 47

292−10
6−0

= 282
6



Example:
Exercise:

Problem:
Computing Average Rate of Change for a Function Expressed as a Formula

Compute the average rate of change of f (x) = x2 − 1
x

 on the interval [2, 4].

Solution:

We can start by computing the function values at each endpoint of the interval.
Equation:

Now we compute the average rate of change.
Equation:

Note:
Exercise:

Problem:Find the average rate of change of f (x) = x− 2√x on the interval [1, 9].

Solution:

1
2

Example:
Exercise:

f(2) = 22 − 1
2 f(4) = 42 − 1

4

= 4 − 1
2 = 16 − 1

4

= 7
2 = 63

4

Average rate of change =
f(4)−f(2)

4−2

                                      =
63
4 − 7

2

4−2

                                    =
49
4

2

                                    = 49
8



Problem:
Finding the Average Rate of Change of a Force

The electrostatic forceF ,measured in newtons, between two charged particles can be
related to the distance between the particles d,in centimeters, by the formula
F (d) = 2

d2 .Find the average rate of change of force if the distance between the
particles is increased from 2 cm to 6 cm.

Solution:

We are computing the average rate of change ofF (d) = 2
d2 on the interval [2, 6].

Equation:

The average rate of change is − 1
9 newton per centimeter.

Example:
Exercise:

Problem:
Finding an Average Rate of Change as an Expression

Find the average rate of change of g (t) = t2 + 3t+ 1 on the interval [0, a]. The
answer will be an expression involving a.

Solution:

We use the average rate of change formula. 
Equation:

Average rate of change  =
F(6)−F(2)

6−2

=
2
62

− 2
22

6−2
Simplify.

=
2
36 −

2
4

4

=
− 16

36

4
Combine numerator terms.

= − 1
9 Simplify

( ) ( )



This result tells us the average rate of change in terms of a between t = 0 and any other
point t = a. For example, on the interval [0, 5], the average rate of change would be
5 + 3 = 8.

Note:
Exercise:

Problem:

Find the average rate of change of f (x) = x2 + 2x− 8 on the interval [5, a].

Solution:

a+ 7

Using a Graph to Determine Where a Function is Increasing, Decreasing, or
Constant

As part of exploring how functions change, we can identify intervals over which the function
is changing in specific ways. We say that a function is increasing on an interval if the
function values increase as the input values increase within that interval. Similarly, a function
is decreasing on an interval if the function values decrease as the input values increase over
that interval. The average rate of change of an increasing function is positive, and the average
rate of change of a decreasing function is negative. [link] shows examples of increasing and
decreasing intervals on a function.

                                     = a+ 3

Average rate of change =
g(a)−g(0)

a−0 Evaluate.

                                     =
(a2+3a+1)−(02+3(0)+1)

a−0 Simplify.

                                     = a2+3a+1−1
a

Simplify and factor.

                                     =
a(a+3)

a
 

Divide by the common factor a.



While some functions are increasing (or decreasing) over their entire domain, many others
are not. A value of the input where a function changes from increasing to decreasing (as we
go from left to right, that is, as the input variable increases) is called a local maximum. If a
function has more than one, we say it has local maxima. Similarly, a value of the input where
a function changes from decreasing to increasing as the input variable increases is called a
local minimum. The plural form is “local minima.” Together, local maxima and minima are
called local extrema, or local extreme values, of the function. (The singular form is
“extremum.”) Often, the term local is replaced by the term relative. In this text, we will use
the term local.

Clearly, a function is neither increasing nor decreasing on an interval where it is constant. A
function is also neither increasing nor decreasing at extrema. Note that we have to speak of
local extrema, because any given local extremum as defined here is not necessarily the
highest maximum or lowest minimum in the function’s entire domain.

For the function whose graph is shown in [link], the local maximum is 16, and it occurs at
x = −2.The local minimum is−16 and it occurs atx = 2.

The function f (x) = x3 − 12x is increasing on
(−∞, − 2)∪ (2, ∞) and is decreasing on (−2, 2).



To locate the local maxima and minima from a graph, we need to observe the graph to
determine where the graph attains its highest and lowest points, respectively, within an open
interval. Like the summit of a roller coaster, the graph of a function is higher at a local
maximum than at nearby points on both sides. The graph will also be lower at a local
minimum than at neighboring points. [link] illustrates these ideas for a local maximum.

Definition of a local maximum



These observations lead us to a formal definition of local extrema.

Note:
Local Minima and Local Maxima
A function f is an increasing function on an open interval if f (b) > f (a)  for every a, b
interval where b > a.
A function f is a decreasing function on an open interval if f (b) < f (a) for every a, b
interval where b > a.
A function f has a local maximum at a point b in an open interval (a, c) if f(b) is greater
than or equal to f(x) for every point x (x does not equal b) in the interval. Likewise, f has a
local minimum at a point b in (a, c) if f(b) is less than or equal to f(x) for every x (x does
not equal b) in the interval.

Example:
Exercise:

Problem:
Finding Increasing and Decreasing Intervals on a Graph

Given the function p (t) in [link], identify the intervals on which the function appears to
be increasing.

Solution:

We see that the function is not constant on any interval. The function is increasing
where it slants upward as we move to the right and decreasing where it slants
downward as we move to the right. The function appears to be increasing from t = 1 to
t = 3 and from t = 4 on.



In interval notation, we would say the function appears to be increasing on the interval
(1,3) and the interval (4,∞).

Analysis

Notice in this example that we used open intervals (intervals that do not include the
endpoints), because the function is neither increasing nor decreasing at t = 1, t = 3, and
t = 4 . These points are the local extrema (two minima and a maximum).

Example:
Exercise:

Problem:
Finding Local Extrema from a Graph

Graph the function f (x) = 2
x
+ x

3
. Then use the graph to estimate the local extrema

of the function and to determine the intervals on which the function is increasing.

Solution:

Using technology, we find that the graph of the function looks like that in [link]. It
appears there is a low point, or local minimum, betweenx = 2 andx = 3, and a
mirror-image high point, or local maximum, somewhere betweenx = −3 andx = −2.

Analysis

Most graphing calculators and graphing utilities can estimate the location of maxima and
minima. [link] provides screen images from two different technologies, showing the
estimate for the local maximum and minimum.



Based on these estimates, the function is increasing on the interval (−∞, − 2.449)  and
(2.449,∞). Notice that, while we expect the extrema to be symmetric, the two different
technologies agree only up to four decimals due to the differing approximation algorithms
used by each. (The exact location of the extrema is at ±√6, but determining this requires
calculus.)

Note:
Exercise:

Problem:

Graph the function f (x) = x3 − 6x2 − 15x+ 20 to estimate the local extrema of the
function. Use these to determine the intervals on which the function is increasing and
decreasing.

Solution:

The local maximum appears to occur at (−1, 28), and the local minimum occurs at
(5,−80). The function is increasing on (−∞,−1) ∪ (5,∞) and decreasing on
(−1, 5).



Example:
Exercise:

Problem:
Finding Local Maxima and Minima from a Graph

For the function f whose graph is shown in [link], find all local maxima and minima.

Solution:

Observe the graph of f. The graph attains a local maximum atx = 1 because it is the
highest point in an open interval aroundx = 1.The local maximum is the y-coordinate



atx = 1, which is 2.

The graph attains a local minimum at x = −1 because it is the lowest point in an open
interval aroundx = −1.The local minimum is the y-coordinate at x = −1, which is
−2.

Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in [link],
[link], and [link].



Use A Graph to Locate the Absolute Maximum and Absolute Minimum

There is a difference between locating the highest and lowest points on a graph in a region
around an open interval (locally) and locating the highest and lowest points on the graph for
the entire domain. The y-coordinates (output) at the highest and lowest points are called the
absolute maximum and absolute minimum, respectively.



To locate absolute maxima and minima from a graph, we need to observe the graph to
determine where the graph attains it highest and lowest points on the domain of the function.
See [link].

Not every function has an absolute maximum or minimum value. The toolkit function
f (x) = x3 is one such function.

Note:
Absolute Maxima and Minima
The absolute maximum of f atx = c is f (c)where f (c) ≥ f (x) for allx in the domain of
f.
The absolute minimum of f atx = d is f (d)where f (d) ≤ f (x) for allx in the domain of
f.

Example:
Exercise:

Problem:
Finding Absolute Maxima and Minima from a Graph

For the function f shown in [link], find all absolute maxima and minima.



Solution:

Observe the graph of f. The graph attains an absolute maximum in two locations,
x = −2 andx = 2, because at these locations, the graph attains its highest point on the
domain of the function. The absolute maximum is the y-coordinate atx = −2 and
x = 2, which is 16.

The graph attains an absolute minimum atx = 3, because it is the lowest point on the
domain of the function’s graph. The absolute minimum is the y-coordinate atx = 3,
which is−10.

Note:
Access this online resource for additional instruction and practice with rates of change.

Average Rate of Change

Key Equations

http://openstaxcollege.org/l/aroc


Average rate of change Δy

Δx
=

f(x2)−f(x1)
x2−x1

Key Concepts

A rate of change relates a change in an output quantity to a change in an input quantity.
The average rate of change is determined using only the beginning and ending data. See
[link].
Identifying points that mark the interval on a graph can be used to find the average rate
of change. See [link].
Comparing pairs of input and output values in a table can also be used to find the
average rate of change. See [link].
An average rate of change can also be computed by determining the function values at
the endpoints of an interval described by a formula. See [link] and [link].
The average rate of change can sometimes be determined as an expression. See [link].
A function is increasing where its rate of change is positive and decreasing where its
rate of change is negative. See [link].
A local maximum is where a function changes from increasing to decreasing and has an
output value larger (more positive or less negative) than output values at neighboring
input values.
A local minimum is where the function changes from decreasing to increasing (as the
input increases) and has an output value smaller (more negative or less positive) than
output values at neighboring input values.
Minima and maxima are also called extrema.
We can find local extrema from a graph. See [link] and [link].
The highest and lowest points on a graph indicate the maxima and minima. See [link].

Section Exercises

Verbal

Exercise:

Problem: Can the average rate of change of a function be constant?

Solution:

Yes, the average rate of change of all linear functions is constant.

Exercise:

Problem:

If a function f is increasing on (a, b) and decreasing on (b, c), then what can be said
about the local extremum of f on (a, c)?



Exercise:

Problem:

How are the absolute maximum and minimum similar to and different from the local
extrema?

Solution:

The absolute maximum and minimum relate to the entire graph, whereas the local
extrema relate only to a specific region around an open interval.

Exercise:

Problem:

How does the graph of the absolute value function compare to the graph of the quadratic
function, y = x2, in terms of increasing and decreasing intervals?

Algebraic

For the following exercises, find the average rate of change of each function on the interval
specified for real numbers b orh.
Exercise:

Problem: f (x) = 4x2 − 7 on [1,  b]

Solution:

4 (b+ 1)

Exercise:

Problem: g (x) = 2x2 − 9 on [4,  b]

Exercise:

Problem: p (x) = 3x+ 4 on [2,  2 + h]

Solution:

3

Exercise:

Problem: k (x) = 4x− 2 on [3,  3 + h]



Exercise:

Problem: f (x) = 2x2 + 1 on [x,x+ h]

Solution:

4x+ 2h

Exercise:

Problem: g (x) = 3x2 − 2 on [x,x+ h]

Exercise:

Problem: a (t) = 1
t+4 on [9, 9 + h]

Solution:

−1
13(13+h)

Exercise:

Problem: b (x) = 1
x+3 on [1, 1 + h]

Exercise:

Problem: j (x) = 3x3 on [1, 1 + h]

Solution:

3h2 + 9h+ 9

Exercise:

Problem: r (t) = 4t3 on [2, 2 + h]

Exercise:

Problem: f(x+h)−f(x)
h

given f (x) = 2x2 − 3x on [x,x+ h]

Solution:

4x+ 2h− 3



Graphical

For the following exercises, consider the graph of f shown in [link].

Exercise:

Problem: Estimate the average rate of change fromx = 1 tox = 4.

Exercise:

Problem: Estimate the average rate of change fromx = 2 tox = 5.

Solution:

4
3

For the following exercises, use the graph of each function to estimate the intervals on which
the function is increasing or decreasing.
Exercise:

Problem:



Exercise:

Problem:

Solution:

increasing on (−∞,−2.5) ∪ (1,∞), decreasing on (−2.5,  1)

Exercise:

Problem:



Exercise:

Problem:

Solution:

increasing on (−∞, 1) ∪ (3, 4), decreasing on (1, 3) ∪ (4,∞)

For the following exercises, consider the graph shown in [link].



Exercise:

Problem: Estimate the intervals where the function is increasing or decreasing.

Exercise:

Problem:

Estimate the point(s) at which the graph of f has a local maximum or a local minimum.

Solution:

local maximum: (−3,  60), local minimum: (3,   − 60)

For the following exercises, consider the graph in [link].



Exercise:

Problem:

If the complete graph of the function is shown, estimate the intervals where the function
is increasing or decreasing.

Exercise:

Problem:

If the complete graph of the function is shown, estimate the absolute maximum and
absolute minimum.

Solution:

absolute maximum at approximately (7,  150), absolute minimum at approximately
(−7.5,  −220)

Numeric

Exercise:

Problem:

[link] gives the annual sales (in millions of dollars) of a product from 1998 to 2006.
What was the average rate of change of annual sales (a) between 2001 and 2002, and (b)
between 2001 and 2004?



Year Sales (millions of dollars)

1998 201

1999 219

2000 233

2001 243

2002 249

2003 251

2004 249

2005 243

2006 233

Exercise:

Problem: 

[link] gives the population of a town (in thousands) from 2000 to 2008. What was the
average rate of change of population (a) between 2002 and 2004, and (b) between 2002
and 2006?

Year Population (thousands)

2000 87

2001 84

2002 83

2003 80

2004 77



2005 76

2006 78

2007 81

2008 85

Solution:

a. –3000; b. –1250

For the following exercises, find the average rate of change of each function on the interval
specified.
Exercise:

Problem: f (x) = x2 on [1,  5]

Exercise:

Problem: h (x) = 5 − 2x2 on [−2, 4]

Solution:

-4

Exercise:

Problem: q (x) = x3 on [−4, 2]

Exercise:

Problem: g (x) = 3x3 − 1 on [−3, 3]

Solution:

27

Exercise:

Problem: y = 1
x

on [1,  3]

Exercise:



Problem: p (t) = (t2−4)(t+1)

t2+3
on [−3, 1]

Solution:

–0.167

Exercise:

Problem: k (t) = 6t2 + 4
t3

on [−1, 3]

Technology

For the following exercises, use a graphing utility to estimate the local extrema of each
function and to estimate the intervals on which the function is increasing and decreasing.
Exercise:

Problem: f (x) = x4 − 4x3 + 5

Solution:

Local minimum at (3,−22), decreasing on (−∞,  3), increasing on (3,  ∞)

Exercise:

Problem: h (x) = x5 + 5x4 + 10x3 + 10x2 − 1

Exercise:

Problem: g (t) = t√t+ 3

Solution:

Local minimum at (−2,−2), decreasing on (−3,−2), increasing on (−2,  ∞)

Exercise:

Problem: k (t) = 3t
2
3 − t

Exercise:

Problem: m (x) = x4 + 2x3 − 12x2 − 10x+ 4



Solution:

Local maximum at (−0.5,  6), local minima at (−3.25,−47) and (2.1,−32),
decreasing on (−∞,−3.25) and (−0.5,  2.1), increasing on (−3.25,   − 0.5) and
(2.1,  ∞)

Exercise:

Problem: n (x) = x4 − 8x3 + 18x2 − 6x+ 2

Extension

Exercise:

Problem:The graph of the function f is shown in [link].

Based on the calculator screen shot, the point (1.333,  5.185)  is which of the following?

A. a relative (local) maximum of the function
B. the vertex of the function
C. the absolute maximum of the function
D. a zero of the function

Solution:

A

Exercise:



Problem:

Let f(x) = 1
x
. Find a number c such that the average rate of change of the function f on

the interval (1, c) is − 1
4 .

Exercise:

Problem:

Let f (x) = 1
x

. Find the number b such that the average rate of change of f on the
interval (2, b) is − 1

10 .

Solution:

b = 5

Real-World Applications

Exercise:

Problem:

At the start of a trip, the odometer on a car read 21,395. At the end of the trip, 13.5
hours later, the odometer read 22,125. Assume the scale on the odometer is in miles.
What is the average speed the car traveled during this trip?

Exercise:

Problem:

A driver of a car stopped at a gas station to fill up his gas tank. He looked at his watch,
and the time read exactly 3:40 p.m. At this time, he started pumping gas into the tank.
At exactly 3:44, the tank was full and he noticed that he had pumped 10.7 gallons. What
is the average rate of flow of the gasoline into the gas tank?

Solution:

2.7 gallons per minute

Exercise:

Problem:

Near the surface of the moon, the distance that an object falls is a function of time. It is
given by d (t) = 2.6667t2, where t is in seconds and d (t) is in feet. If an object is
dropped from a certain height, find the average velocity of the object from t = 1 to
t = 2.



Exercise:

Problem:The graph in [link] illustrates the decay of a radioactive substance over t days.

Use the graph to estimate the average decay rate from t = 5 to t = 15.

Solution:

approximately –0.6 milligrams per day

Glossary

absolute maximum
the greatest value of a function over an interval

absolute minimum
the lowest value of a function over an interval

average rate of change
the difference in the output values of a function found for two values of the input
divided by the difference between the inputs

decreasing function
a function is decreasing in some open interval if f (b) < f (a) for any two input values
a and b in the given interval where b > a

increasing function
a function is increasing in some open interval if f (b) > f (a) for any two input values
a and b in the given interval where b > a

local extrema



collectively, all of a function's local maxima and minima

local maximum
a value of the input where a function changes from increasing to decreasing as the input
value increases.

local minimum
a value of the input where a function changes from decreasing to increasing as the input
value increases.

rate of change
the change of an output quantity relative to the change of the input quantity



Composition of Functions
In this section, you will:

Combine functions using algebraic operations.
Create a new function by composition of functions.
Evaluate composite functions.
Find the domain of a composite function.
Decompose a composite function into its component functions.

Suppose we want to calculate how much it costs to heat a house on a
particular day of the year. The cost to heat a house will depend on the
average daily temperature, and in turn, the average daily temperature
depends on the particular day of the year. Notice how we have just defined
two relationships: The cost depends on the temperature, and the temperature
depends on the day.

Using descriptive variables, we can notate these two functions. The
functionC (T ) gives the costC of heating a house for a given average daily
temperature inT degrees Celsius. The functionT (d) gives the average
daily temperature on day d of the year. For any given day,
Cost = C (T (d))means that the cost depends on the temperature, which
in turns depends on the day of the year. Thus, we can evaluate the cost
function at the temperatureT (d). For example, we could evaluateT (5) to
determine the average daily temperature on the 5th day of the year. Then,
we could evaluate the cost function at that temperature. We would write
C (T (5)).

By combining these two relationships into one function, we have performed
function composition, which is the focus of this section.



Combining Functions Using Algebraic Operations

Function composition is only one way to combine existing functions.
Another way is to carry out the usual algebraic operations on functions,
such as addition, subtraction, multiplication and division. We do this by
performing the operations with the function outputs, defining the result as
the output of our new function.

Suppose we need to add two columns of numbers that represent a husband
and wife’s separate annual incomes over a period of years, with the result
being their total household income. We want to do this for every year,
adding only that year’s incomes and then collecting all the data in a new
column. Ifw(y) is the wife’s income andh(y) is the husband’s income in
year y, and we wantT to represent the total income, then we can define a
new function.
Equation:

T (y) = h (y) + w (y)

If this holds true for every year, then we can focus on the relation between
the functions without reference to a year and write
Equation:

T = h+ w

Just as for this sum of two functions, we can define difference, product, and
ratio functions for any pair of functions that have the same kinds of inputs
(not necessarily numbers) and also the same kinds of outputs (which do
have to be numbers so that the usual operations of algebra can apply to
them, and which also must have the same units or no units when we add
and subtract). In this way, we can think of adding, subtracting, multiplying,
and dividing functions.

For two functions f (x) and g (x)with real number outputs, we define new
functionsf + g, f − g, fg, and f

g
by the relations

Equation:



Example:
Exercise:

Problem:
Performing Algebraic Operations on Functions

Find and simplify the functions (g− f) (x) and ( g

f
) (x), given

f (x) = x− 1 and g (x) = x2 − 1.Are they the same function?

Solution:

Begin by writing the general form, and then substitute the given
functions.
Equation:

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x) − g(x)

     (fg)(x) = f(x)g(x)

      ( f

g
)(x) = f(x)

g(x)



No, the functions are not the same.

Note: For ( g

f
) (x), the conditionx ≠ 1 is necessary because when

x = 1, the denominator is equal to 0, which makes the function
undefined.

Note:
Exercise:

Problem:Find and simplify the functions (fg) (x) and (f − g) (x).
Equation:

f (x) = x− 1    and    g (x) = x2 − 1

Are they the same function?

Solution:

(g− f)(x) = g(x) − f(x)

(g− f)(x) = x2 − 1 − (x− 1)

                 = x2 − x

                 = x(x− 1)

     ( g

f
)(x) = g(x)

f(x)

     ( g

f
)(x) = x2−1

x−1

                 =
(x+1)(x−1)

x−1       where x ≠ 1

                 = x+ 1



No, the functions are not the same.

Create a Function by Composition of Functions

Performing algebraic operations on functions combines them into a new
function, but we can also create functions by composing functions. When
we wanted to compute a heating cost from a day of the year, we created a
new function that takes a day as input and yields a cost as output. The
process of combining functions so that the output of one function becomes
the input of another is known as a composition of functions. The resulting
function is known as a composite function. We represent this combination
by the following notation:
Equation:

(f ∘ g) (x) = f (g (x))

We read the left-hand side as‵‵f composed with g atx ,” and the right-hand
side as‵‵f of g ofx.′′The two sides of the equation have the same
mathematical meaning and are equal. The open circle symbol ∘ is called
the composition operator. We use this operator mainly when we wish to
emphasize the relationship between the functions themselves without
referring to any particular input value. Composition is a binary operation
that takes two functions and forms a new function, much as addition or
multiplication takes two numbers and gives a new number. However, it is
important not to confuse function composition with multiplication because,
as we learned above, in most cases f(g(x)) ≠ f(x)g(x).

It is also important to understand the order of operations in evaluating a
composite function. We follow the usual convention with parentheses by
starting with the innermost parentheses first, and then working to the
outside. In the equation above, the function g takes the inputx first and

(fg) (x) = f (x)g (x) = (x− 1) (x2 − 1) = x3 − x2 − x+ 1

(f − g) (x) = f (x) − g (x) = (x− 1) − (x2 − 1) = x− x2



yields an output g (x). Then the function f takes g (x) as an input and yields
an output f (g (x)).

In general, f ∘ g and g ∘ f are different functions. In other words, in many
cases f (g (x)) ≠ g (f (x)) for allx. We will also see that sometimes two
functions can be composed only in one specific order.

For example, if f (x) = x2 and g (x) = x+ 2,then
Equation:

but
Equation:

These expressions are not equal for all values ofx, so the two functions are
not equal. It is irrelevant that the expressions happen to be equal for the
single input valuex = − 1

2
.

Note that the range of the inside function (the first function to be evaluated)
needs to be within the domain of the outside function. Less formally, the

    f(g(x)) = f(x+ 2)

                = (x+ 2)2

                = x2 + 4x+ 4

   g(f(x)) = g(x2)

                = x2 + 2



composition has to make sense in terms of inputs and outputs.

Note:
Composition of Functions
When the output of one function is used as the input of another, we call the
entire operation a composition of functions. For any inputx and functions
f and g, this action defines a composite function, which we write as f ∘ g
such that
Equation:

(f ∘ g) (x) = f (g (x))

The domain of the composite function f ∘ g is allx such thatx is in the
domain of g and g (x) is in the domain of f.
It is important to realize that the product of functions fg is not the same as
the function composition f (g (x)), because, in general,
f (x)g (x) ≠ f (g (x)).

Example:
Exercise:

Problem:
Determining whether Composition of Functions is Commutative

Using the functions provided, find f (g (x)) and g (f (x)). Determine
whether the composition of the functions is commutative.
Equation:

f(x) = 2x+ 1 g(x) = 3 − x

Solution:

Let’s begin by substituting g (x) into f (x).
Equation:



Now we can substitute f (x) into g (x).
Equation:

We find that g(f(x)) ≠ f(g(x)), so the operation of function
composition is not commutative.

Example:
Exercise:

Problem:
Interpreting Composite Functions

The function c(s) gives the number of calories burned completing s
sit-ups, and s(t) gives the number of sit-ups a person can complete in
tminutes. Interpret c(s(3)).

Solution:

The inside expression in the composition is s(3). Because the input to
the s-function is time, t = 3 represents 3 minutes, and s(3) is the
number of sit-ups completed in 3 minutes.

Using s(3) as the input to the function c(s) gives us the number of
calories burned during the number of sit-ups that can be completed in

 f(g(x)) = 2(3 − x) + 1

                = 6 − 2x+ 1

                = 7 − 2x

 g(f(x)) = 3 − (2x+ 1)

                = 3 − 2x− 1

                = −2x+ 2



3 minutes, or simply the number of calories burned in 3 minutes (by
doing sit-ups).

Example:
Exercise:

Problem:
Investigating the Order of Function Composition

Suppose f(x) gives miles that can be driven inx hours and g(y) gives
the gallons of gas used in driving ymiles. Which of these expressions
is meaningful: f (g(y)) or g (f(x))?

Solution:

The function y = f (x) is a function whose output is the number of
miles driven corresponding to the number of hours driven.
Equation:

number of miles  = f (number of hours)

The function g (y) is a function whose output is the number of gallons
used corresponding to the number of miles driven. This means:
Equation:

number of gallons  = g (number of miles)

The expression g(y) takes miles as the input and a number of gallons
as the output. The function f(x) requires a number of hours as the
input. Trying to input a number of gallons does not make sense. The
expression f (g(y)) is meaningless.

The expression f(x) takes hours as input and a number of miles
driven as the output. The function g(y) requires a number of miles as



the input. Using f(x) (miles driven) as an input value for g(y), where
gallons of gas depends on miles driven, does make sense. The
expression g (f(x))makes sense, and will yield the number of gallons
of gas used, g, driving a certain number of miles, f(x), inx hours.

Note:
Are there any situations where f(g(y)) and g(f(x))would both be
meaningful or useful expressions?
Yes. For many pure mathematical functions, both compositions make sense,
even though they usually produce different new functions. In real-world
problems, functions whose inputs and outputs have the same units also may
give compositions that are meaningful in either order.

Note:
Exercise:

Problem:

The gravitational force on a planet a distance r from the sun is given
by the function G(r). The acceleration of a planet subjected to any
force F  is given by the function a(F). Form a meaningful
composition of these two functions, and explain what it means.

Solution:

A gravitational force is still a force, so a (G(r)) makes sense as the
acceleration of a planet at a distance r from the Sun (due to gravity),
but G (a(F)) does not make sense.

Evaluating Composite Functions



Once we compose a new function from two existing functions, we need to
be able to evaluate it for any input in its domain. We will do this with
specific numerical inputs for functions expressed as tables, graphs, and
formulas and with variables as inputs to functions expressed as formulas. In
each case, we evaluate the inner function using the starting input and then
use the inner function’s output as the input for the outer function.

Evaluating Composite Functions Using Tables

When working with functions given as tables, we read input and output
values from the table entries and always work from the inside to the
outside. We evaluate the inside function first and then use the output of the
inside function as the input to the outside function.

Example:
Exercise:

Problem:
Using a Table to Evaluate a Composite Function

Using [link], evaluate f(g(3)) and g(f(3)).

x f(x) g(x)

1 6 3

2 8 5

3 3 2



x f(x) g(x)

4 1 7

Solution:

To evaluate f(g(3) ), we start from the inside with the input value 3.
We then evaluate the inside expression g(3) using the table that
defines the function g : g(3) = 2.We can then use that result as the
input to the function f, so g(3) is replaced by 2 and we get f(2).
Then, using the table that defines the function f, we find that
f(2) = 8.
Equation:

To evaluate g(f(3) ), we first evaluate the inside expression f(3)
using the first table: f(3) = 3.Then, using the table for g,we can
evaluate
Equation:

g(f(3)) = g(3) = 2

[link] shows the composite functions f ∘ g and g ∘ f as tables.

x g (x) f (g (x)) f (x) g (f (x))

3 2 8 3 2

g(3) = 2

f(g(3)) = f(2) = 8



Note:
Exercise:

Problem: Using [link], evaluate f(g(1)) and g(f(4)).

Solution:

f(g(1)) = f(3) = 3 and g(f(4)) = g(1) = 3

Evaluating Composite Functions Using Graphs

When we are given individual functions as graphs, the procedure for
evaluating composite functions is similar to the process we use for
evaluating tables. We read the input and output values, but this time, from
thex- and y-axes of the graphs.

Note:
Given a composite function and graphs of its individual functions,
evaluate it using the information provided by the graphs.

1. Locate the given input to the inner function on thex-axis of its graph.
2. Read off the output of the inner function from the y-axis of its graph.
3. Locate the inner function output on thex-axis of the graph of the

outer function.
4. Read the output of the outer function from the y-axis of its graph. This

is the output of the composite function.



Example:
Exercise:

Problem:
Using a Graph to Evaluate a Composite Function

Using [link], evaluate f(g(1)).

Solution:

To evaluate f(g(1)), we start with the inside evaluation. See [link].



We evaluate g(1) using the graph of g(x), finding the input of 1 on the
x-axis and finding the output value of the graph at that input. Here,
g(1) = 3.We use this value as the input to the function f.
Equation:

f(g(1)) = f(3)

We can then evaluate the composite function by looking to the graph
of f(x), finding the input of 3 on the x-axis and reading the output
value of the graph at this input. Here, f(3) = 6, so f(g(1)) = 6.

Analysis

[link] shows how we can mark the graphs with arrows to trace the path
from the input value to the output value.



Note:
Exercise:

Problem:Using [link], evaluate g(f(2)).

Solution:

g(f(2)) = g(5) = 3

Evaluating Composite Functions Using Formulas

When evaluating a composite function where we have either created or
been given formulas, the rule of working from the inside out remains the
same. The input value to the outer function will be the output of the inner
function, which may be a numerical value, a variable name, or a more
complicated expression.



While we can compose the functions for each individual input value, it is
sometimes helpful to find a single formula that will calculate the result of a
composition f (g (x)). To do this, we will extend our idea of function
evaluation. Recall that, when we evaluate a function like f(t) = t2 − t, we
substitute the value inside the parentheses into the formula wherever we see
the input variable.

Note:
Given a formula for a composite function, evaluate the function.

1. Evaluate the inside function using the input value or variable
provided.

2. Use the resulting output as the input to the outside function.

Example:
Exercise:

Problem:
Evaluating a Composition of Functions Expressed as Formulas
with a Numerical Input

Given f(t) = t2 − t andh(x) = 3x+ 2, evaluate f(h(1)).

Solution:

Because the inside expression ish(1), we start by evaluatingh(x)  at
1.
Equation:

h(1) = 3(1) + 2

h(1) = 5



Then f(h(1)) = f(5), so we evaluate f(t) at an input of 5.
Equation:

Analysis

It makes no difference what the input variables t andxwere called in this
problem because we evaluated for specific numerical values.

Note:
Exercise:

Problem:Given f(t) = t2 − t andh(x) = 3x+ 2, evaluate

a. h(f(2))
b. h(f(−2))

Solution:

a. 8; b. 20

Finding the Domain of a Composite Function

As we discussed previously, the domain of a composite function such as
f ∘ g is dependent on the domain of g and the domain of f. It is important
to know when we can apply a composite function and when we cannot, that
is, to know the domain of a function such as f ∘ g. Let us assume we know
the domains of the functions f and g separately. If we write the composite

f(h(1)) = f(5)

f(h(1)) = 52 − 5

f(h(1)) = 20



function for an inputx as f (g (x)), we can see right away thatxmust be a
member of the domain of g in order for the expression to be meaningful,
because otherwise we cannot complete the inner function evaluation.
However, we also see that g (x)must be a member of the domain of f,
otherwise the second function evaluation in f (g (x)) cannot be completed,
and the expression is still undefined. Thus the domain of f ∘ g consists of
only those inputs in the domain of g that produce outputs from g belonging
to the domain of f. Note that the domain of f composed with g is the set of
allx such thatx is in the domain of g and g (x) is in the domain of f.

Note:
Domain of a Composite Function
The domain of a composite function f (g (x)) is the set of those inputsx in
the domain of g for which g (x) is in the domain of f.

Note:
Given a function composition f(g(x)),determine its domain.

1. Find the domain of g.
2. Find the domain of f.
3. Find those inputsx in the domain of g for which g (x) is in the domain

of f. That is, exclude those inputsx from the domain of g for which
g (x) is not in the domain of f. The resulting set is the domain of
f ∘ g.

Example:
Exercise:

Problem:
Finding the Domain of a Composite Function



Find the domain of
Equation:

(f ∘ g)(x)    where f(x) =
5

x− 1
  and  g(x) =

4

3x− 2

Solution:

The domain of g (x) consists of all real numbers exceptx = 2
3 , since

that input value would cause us to divide by 0. Likewise, the domain
of f consists of all real numbers except 1. So we need to exclude from
the domain of g (x) that value ofx for which g (x) = 1.
Equation:

So the domain of f ∘ g is the set of all real numbers except 2
3

and 2.
This means that
Equation:

x ≠
2

3
or x ≠ 2

We can write this in interval notation as
Equation:

(−∞,
2

3
) ∪ (

2

3
, 2) ∪ (2,∞)

4
3x−2

= 1

4 = 3x− 2

6 = 3x

x = 2



Example:
Exercise:

Problem:
Finding the Domain of a Composite Function Involving Radicals

Find the domain of
Equation:

(f ∘ g)(x)  where f(x) = √x+ 2  and   g(x) = √3 − x

Solution:

Because we cannot take the square root of a negative number, the
domain of g is (−∞, 3]. Now we check the domain of the composite
function
Equation:

(f ∘ g)(x) = √√3 − x+ 2

For (f ∘ g)(x) = √√3 − x+ 2,√3 − x+ 2 ≥ 0, since the
radicand of a square root must be positive. Since square roots are
positive, √3 − x ≥ 0, or, 3 − x ≥ 0,which gives a domain of 
(-∞, 3].

Analysis

This example shows that knowledge of the range of functions (specifically
the inner function) can also be helpful in finding the domain of a
composite function. It also shows that the domain of f ∘ g can contain
values that are not in the domain of f, though they must be in the domain
of g.

Note:



Exercise:

Problem:Find the domain of
Equation:

(f ∘ g)(x)  where f(x) =
1

x− 2
  and   g(x) = √x+ 4

Solution:

[−4, 0) ∪ (0,∞)

Decomposing a Composite Function into its Component
Functions

In some cases, it is necessary to decompose a complicated function. In other
words, we can write it as a composition of two simpler functions. There
may be more than one way to decompose a composite function, so we may
choose the decomposition that appears to be most expedient.

Example:
Exercise:

Problem:
Decomposing a Function

Write f(x) = √5 − x2 as the composition of two functions.

Solution:

We are looking for two functions, g andh, so f(x) = g(h(x)). To do
this, we look for a function inside a function in the formula for f(x).



As one possibility, we might notice that the expression 5 − x2 is the
inside of the square root. We could then decompose the function as
Equation:

h(x) = 5 − x2 and g(x) = √x

We can check our answer by recomposing the functions.
Equation:

g(h(x)) = g (5 − x2) = √5 − x2

Note:
Exercise:

Problem:Write f(x) = 4

3−√4+x2
as the composition of two functions.

Solution:

Possible answer: 

g (x) = √4 + x2  
h (x) = 4

3−x
 

f = h ∘ g

Note:
Access these online resources for additional instruction and practice with
composite functions.

Composite Functions
Composite Function Notation Application

http://openstaxcollege.org/l/compfunction
http://openstaxcollege.org/l/compfuncnot


Composite Functions Using Graphs
Decompose Functions
Composite Function Values

Key Equation

Composite function (f ∘ g) (x) = f (g (x))

Key Concepts

We can perform algebraic operations on functions. See [link].
When functions are combined, the output of the first (inner) function
becomes the input of the second (outer) function.
The function produced by combining two functions is a composite
function. See [link] and [link].
The order of function composition must be considered when
interpreting the meaning of composite functions. See [link].
A composite function can be evaluated by evaluating the inner
function using the given input value and then evaluating the outer
function taking as its input the output of the inner function.
A composite function can be evaluated from a table. See [link].
A composite function can be evaluated from a graph. See [link].
A composite function can be evaluated from a formula. See [link].
The domain of a composite function consists of those inputs in the
domain of the inner function that correspond to outputs of the inner
function that are in the domain of the outer function. See [link] and
[link].
Just as functions can be combined to form a composite function,
composite functions can be decomposed into simpler functions.

http://openstaxcollege.org/l/compfuncgraph
http://openstaxcollege.org/l/decompfunction
http://openstaxcollege.org/l/compfuncvalue


Functions can often be decomposed in more than one way. See [link].

Section Exercises

Verbal

Exercise:

Problem: 

How does one find the domain of the quotient of two functions, f

g
?

Solution:

Find the numbers that make the function in the denominator g equal to
zero, and check for any other domain restrictions on f and g, such as
an even-indexed root or zeros in the denominator.

Exercise:

Problem: What is the composition of two functions, f ∘ g?

Exercise:

Problem: 

If the order is reversed when composing two functions, can the result
ever be the same as the answer in the original order of the
composition? If yes, give an example. If no, explain why not.

Solution:

Yes. Sample answer: Let f(x) = x+ 1 and g(x) = x− 1.Then
f(g(x)) = f(x− 1) = (x− 1) + 1 = x and
g(f(x)) = g(x+ 1) = (x+ 1) − 1 = x. So f ∘ g = g ∘ f.

Exercise:



Problem: 

How do you find the domain for the composition of two functions,
f ∘ g?

Algebraic

Exercise:

Problem: 

Given f(x) = x2 + 2x and g(x) = 6 − x2,find f + g, f − g, fg,  
and  f

g
.Determine the domain for each function in interval notation.

Solution:

(f + g) (x) = 2x+ 6, domain: (−∞,∞)

(f − g) (x) = 2x2 + 2x− 6, domain: (−∞,∞)

(fg) (x) = −x4 − 2x3 + 6x2 + 12x, domain: (−∞,∞)

( f

g
) (x) = x2+2x

6−x2 , domain: (−∞,−√6) ∪ (−√6,√6) ∪ (√6,∞)

Exercise:

Problem: 

Given f(x) = −3x2 + x and g(x) = 5, find f + g, f − g, fg, and
  f

g
. Determine the domain for each function in interval notation.

Exercise:



Problem: 

Given f(x) = 2x2 + 4x and g(x) = 1
2x ,find f + g, f − g, fg,  and

  f
g
. Determine the domain for each function in interval notation.

Solution:

(f + g) (x) = 4x3+8x2+1
2x , domain: (−∞, 0) ∪ (0,∞)

(f − g) (x) = 4x3+8x2−1
2x

, domain: (−∞, 0) ∪ (0,∞)

(fg) (x) = x+ 2, domain: (−∞, 0) ∪ (0,∞)

( f

g
) (x) = 4x3 + 8x2, domain: (−∞, 0) ∪ (0,∞)

Exercise:

Problem: 

Given f(x) = 1
x−4

and g(x) = 1
6−x

, find f + g, f − g, fg,  and  f
g
.

Determine the domain for each function in interval notation.

Exercise:

Problem: 

Given f(x) = 3x2 and g(x) = √x− 5, find f + g, f − g, fg,  and
  f
g
. Determine the domain for each function in interval notation.

Solution:

(f + g)(x) = 3x2 +√x− 5, domain: [5,∞)

(f − g)(x) = 3x2 −√x− 5, domain: [5,∞)

(fg)(x) = 3x2√x− 5, domain: [5,∞)



( f

g
)(x) = 3x2

√x−5
, domain: (5,∞)

Exercise:

Problem: 

Given f(x) = √x and g(x) = |x− 3|, find g

f
. Determine the domain

of the function in interval notation.

Exercise:

Problem: 

Given f(x) = 2x2 + 1 and g(x) = 3x− 5, find the following:

a. f(g(2))
b. f(g(x))
c. g(f(x))
d. (g ∘ g) (x)
e. (f ∘ f) (−2)

Solution:

a. 3; b. f (g (x)) = 2(3x− 5)2 + 1; c. f (g (x)) = 6x2 − 2; d.
(g ∘ g)(x) = 3(3x− 5) − 5 = 9x− 20; e. (f ∘ f) (−2) = 163

For the following exercises, use each pair of functions to find f (g (x)) and
g (f (x)). Simplify your answers.
Exercise:

Problem: f(x) = x2 + 1, g(x) = √x+ 2

Exercise:

Problem: f(x) = √x+ 2, g(x) = x2 + 3

Solution:



f(g(x)) = √x2 + 3 + 2, g(f(x)) = x+ 4√x+ 7

Exercise:

Problem: f(x) = |x|, g(x) = 5x+ 1

Exercise:

Problem: f(x) = 3√x, g(x) = x+1
x3

Solution:

f(g(x)) = 3√ x+1
x3 =

3√x+1
x

, g(f(x)) =
3√x+1
x

Exercise:

Problem: f(x) = 1
x−6 , g(x) =

7
x
+ 6

Exercise:

Problem: f(x) = 1
x−4

, g(x) = 2
x
+ 4

Solution:

(f ∘ g)(x) = 1
2
x
+4−4

= x
2
,   (g ∘ f)(x) = 2x− 4

For the following exercises, use each set of functions to find f (g (h(x))).
Simplify your answers.
Exercise:

Problem: f(x) = x4 + 6, g(x) = x− 6, andh(x) = √x

Exercise:

Problem: f(x) = x2 + 1, g(x) = 1
x
, andh(x) = x+ 3



Solution:

f(g(h(x))) = ( 1
x+3

)
2
+ 1

Exercise:

Problem: Given f(x) = 1
x

and g(x) = x− 3, find the following:

a. (f ∘ g)(x)
b. the domain of (f ∘ g)(x) in interval notation
c. (g ∘ f)(x)
d. the domain of (g ∘ f)(x)
e. ( f

g
)x

Exercise:

Problem: 

Given f(x) = √2 − 4x and g(x) = − 3
x
, find the following:

a. (g ∘ f)(x)
b. the domain of (g ∘ f)(x) in interval notation

Solution:

a. (g ∘ f)(x) = − 3
√2−4x

; b. (−∞, 1
2 )

Exercise:

Problem: 

Given the functions f(x) = 1−x
x

and g(x) = 1
1+x2 ,  find the

following:

a. (g ∘ f)(x)
b. (g ∘ f)(2)



Exercise:

Problem: 

Given functions p(x) = 1
√x

andm(x) = x2 − 4, state the domain of
each of the following functions using interval notation:

a. p(x)
m(x)

b. p(m(x))
c. m(p(x))

Solution:

a. (0, 2) ∪ (2,∞); b. (−∞,−2) ∪ (2,∞); c. (0,∞)

Exercise:

Problem: 

Given functions q(x) = 1
√x

andh(x) = x2 − 9, state the domain of
each of the following functions using interval notation.

a. q(x)
h(x)

b. q (h(x))
c. h (q(x))

Exercise:

Problem: 

For f(x) = 1
x

and g(x) = √x− 1, write the domain of (f ∘ g)(x) in
interval notation.

Solution:

(1,∞)



For the following exercises, find functions f(x) and g(x) so the given
function can be expressed ash(x) = f (g(x)).
Exercise:

Problem: h(x) = (x+ 2)2

Exercise:

Problem: h(x) = (x− 5)3

Solution:

sample:

Exercise:

Problem: h(x) = 3
x−5

Exercise:

Problem: h(x) = 4
(x+2)2

Solution:

sample:

Exercise:

Problem: h(x) = 4 + 3√x

Exercise:

f(x) = x3

g(x) = x− 5

f(x) = 4
x

g(x) = (x+ 2)2



Problem: h(x) = 3√ 1
2x−3

Solution:

sample:

Exercise:

Problem: h(x) = 1
(3x2−4)−3

Exercise:

Problem: h(x) = 4√ 3x−2
x+5

Solution:

sample:

Exercise:

Problem: h(x) = ( 8+x3

8−x3 )
4

Exercise:

Problem: h(x) = √2x+ 6

Solution:

sample: f(x) = √x 
g(x) = 2x+ 6

f(x) = 3√x

g(x) = 1
2x−3

f(x) = 4√x

g(x) = 3x−2
x+5



Exercise:

Problem: h(x) = (5x− 1)3

Exercise:

Problem: h(x) = 3√x− 1

Solution:

sample: f(x) = 3√x  
g(x) = (x− 1)

Exercise:

Problem: h(x) = x2 + 7

Exercise:

Problem: h(x) = 1
(x−2)3

Solution:

sample: f(x) = x3  
g(x) = 1

x−2

Exercise:

Problem: h(x) = ( 1
2x−3

)
2

Exercise:

Problem: h(x) = √ 2x−1
3x+4

Solution: ∣ ∣



sample: f(x) = √x  
g(x) = 2x−1

3x+4

Graphical

For the following exercises, use the graphs of f,shown in [link], and g,
shown in [link], to evaluate the expressions.



Exercise:

Problem: f (g(3))

Exercise:

Problem: f (g(1))

Solution:

2

Exercise:

Problem: g (f(1))

Exercise:

Problem: g (f(0))

Solution:

5

Exercise:



Problem: f (f(5))

Exercise:

Problem: f (f(4))

Solution:

4

Exercise:

Problem: g (g(2))

Exercise:

Problem: g (g(0))

Solution:

0

For the following exercises, use graphs of f(x),shown in [link], g(x),shown
in [link], andh(x),shown in [link], to evaluate the expressions.





Exercise:

Problem: g (f (1))

Exercise:

Problem: g (f (2))

Solution:

2

Exercise:

Problem: f (g (4))

Exercise:

Problem: f (g (1))

Solution:

1

Exercise:

Problem: f (h (2))



Exercise:

Problem: h (f (2))

Solution:

4

Exercise:

Problem: f (g (h (4)))

Exercise:

Problem: f (g (f (−2)))

Solution:

4

Numeric

For the following exercises, use the function values for f and g shown in
[link] to evaluate each expression.

x f(x) g(x)

0 7 9

1 6 5



2 5 6

3 8 2

4 4 1

5 0 8

6 2 7

7 1 3

8 9 4

9 3 0

Exercise:

Problem: f (g (8))

Exercise:

Problem: f (g (5))

Solution:

9

Exercise:

Problem: g (f (5))

Exercise:

Problem: g (f (3))

Solution:



4

Exercise:

Problem: f (f (4))

Exercise:

Problem: f (f (1))

Solution:

2

Exercise:

Problem: g (g (2))

Exercise:

Problem: g (g (6))

Solution:

3

For the following exercises, use the function values for f and g shown in
[link] to evaluate the expressions.

x f(x) g(x)

-3 11 -8



-2 9 -3

-1 7 0

0 5 1

1 3 0

2 1 -3

3 -1 -8

Exercise:

Problem: (f ∘ g)(1)

Exercise:

Problem: (f ∘ g)(2)

Solution:

11

Exercise:

Problem: (g ∘ f)(2)

Exercise:

Problem: (g ∘ f)(3)

Solution:

0

Exercise:



Problem: (g ∘ g)(1)

Exercise:

Problem: (f ∘ f)(3)

Solution:

7

For the following exercises, use each pair of functions to find f (g (0)) and
g (f(0)).
Exercise:

Problem: f(x) = 4x+ 8, g(x) = 7 − x2

Exercise:

Problem: f(x) = 5x+ 7, g(x) = 4 − 2x2

Solution:

f(g(0)) = 27, g (f(0)) = −94

Exercise:

Problem: f(x) = √x+ 4, g(x) = 12 − x3

Exercise:

Problem: f(x) = 1
x+2 , g(x) = 4x+ 3

Solution:

f(g(0)) = 1
5 , g(f(0)) = 5



For the following exercises, use the functions f(x) = 2x2 + 1 and
g(x) = 3x+ 5  to evaluate or find the composite function as indicated.
Exercise:

Problem: f (g(2))

Exercise:

Problem: f (g(x))

Solution:

18x2 + 60x+ 51

Exercise:

Problem: g (f(−3))

Exercise:

Problem: (g ∘ g)(x)

Solution:

g ∘ g(x) = 9x+ 20

Extensions

For the following exercises, use f(x) = x3 + 1 and g(x) = 3√x− 1.
Exercise:

Problem: Find (f ∘ g)(x) and (g ∘ f)(x). Compare the two answers.

Exercise:



Problem: Find (f ∘ g)(2) and (g ∘ f)(2).

Solution:

2

Exercise:

Problem: What is the domain of (g ∘ f)(x)?

Exercise:

Problem: What is the domain of (f ∘ g)(x)?

Solution:

(−∞,∞)

Exercise:

Problem: Let f(x) = 1
x
.

a. Find (f ∘ f)(x).
b. Is (f ∘ f)(x) for any function f the same result as the answer to

part (a) for any function? Explain.

For the following exercises, letF(x) = (x+ 1)5, f(x) = x5, and
g(x) = x+ 1.
Exercise:

Problem: True or False: (g ∘ f)(x) = F(x).

Solution:

False



Exercise:

Problem: True or False: (f ∘ g)(x) = F(x).

For the following exercises, find the composition when f(x) = x2 + 2 for
allx ≥ 0 and g(x) = √x− 2.
Exercise:

Problem: (f ∘ g)(6); (g ∘ f)(6)

Solution:

(f ∘ g)(6) = 6; (g ∘ f)(6) = 6

Exercise:

Problem: (g ∘ f)(a); (f ∘ g)(a)

Exercise:

Problem: (f ∘ g)(11); (g ∘ f)(11)

Solution:

(f ∘ g)(11) = 11 , (g ∘ f)(11) = 11

Real-World Applications

Exercise:



Problem: 

The functionD(p) gives the number of items that will be demanded
when the price is p. The production costC(x) is the cost of producing
x items. To determine the cost of production when the price is $6, you
would do which of the following?

a. EvaluateD (C(6)).
b. EvaluateC (D(6)).
c. SolveD (C(x)) = 6.
d. SolveC (D(p)) = 6.

Exercise:

Problem:

The functionA(d) gives the pain level on a scale of 0 to 10
experienced by a patient with dmilligrams of a pain-reducing drug in
her system. The milligrams of the drug in the patient’s system after t
minutes is modeled bym(t). Which of the following would you do in
order to determine when the patient will be at a pain level of 4?

a. EvaluateA (m(4)).
b. Evaluatem (A(4)).
c. SolveA (m(t)) = 4.
d. Solvem (A(d)) = 4.

Solution:

c

Exercise:



Problem: 

A store offers customers a 30% discount on the pricex of selected
items. Then, the store takes off an additional 15% at the cash register.
Write a price functionP(x) that computes the final price of the item in
terms of the original pricex. (Hint: Use function composition to find
your answer.)

Exercise:

Problem: 

A rain drop hitting a lake makes a circular ripple. If the radius, in
inches, grows as a function of time in minutes according to
r(t) = 25√t+ 2, find the area of the ripple as a function of time.
Find the area of the ripple at t = 2.

Solution:

A(t) = π(25√t+ 2)
2

andA(2) = π(25√4)
2
= 2500π square

inches

Exercise:

Problem: 

A forest fire leaves behind an area of grass burned in an expanding
circular pattern. If the radius of the circle of burning grass is increasing
with time according to the formula r(t) = 2t+ 1, express the area
burned as a function of time, t (minutes).

Exercise:

Problem: 

Use the function you found in the previous exercise to find the total
area burned after 5 minutes.

Solution:



A(5) = π(2(5) + 1)2 = 121π square units

Exercise:

Problem: 

The radius r, in inches, of a spherical balloon is related to the volume,

V , by r(V ) = 3√ 3V
4π

. Air is pumped into the balloon, so the volume
after t seconds is given byV (t) = 10 + 20t.

a. Find the composite function r (V (t)).
b. Find the exact time when the radius reaches 10 inches.

Exercise:

Problem: 

The number of bacteria in a refrigerated food product is given by 
N(T ) = 23T 2 − 56T + 1, 3 < T < 33, whereT  is the temperature
of the food. When the food is removed from the refrigerator, the
temperature is given by T (t) = 5t+ 1.5, where t is the time in hours.

a. Find the composite functionN (T (t)).
b. Find the time (round to two decimal places) when the bacteria

count reaches 6752.

Solution:

a.N(T (t)) = 23(5t+ 1.5)2 − 56(5t+ 1.5) + 1;  b. 3.38 hours

Glossary

composite function
the new function formed by function composition, when the output of
one function is used as the input of another



Transformation of Functions
In this section, you will:

Graph functions using vertical and horizontal shifts.
Graph functions using reflections about the x-axis and the y-axis.
Determine whether a function is even, odd, or neither from its graph.
Graph functions using compressions and stretches.
Combine transformations.

We all know that a flat mirror enables us to see an accurate image of
ourselves and whatever is behind us. When we tilt the mirror, the images we
see may shift horizontally or vertically. But what happens when we bend a
flexible mirror? Like a carnival funhouse mirror, it presents us with a
distorted image of ourselves, stretched or compressed horizontally or
vertically. In a similar way, we can distort or transform mathematical
functions to better adapt them to describing objects or processes in the real
world. In this section, we will take a look at several kinds of
transformations.

(credit: "Misko"/Flickr)



Graphing Functions Using Vertical and Horizontal Shifts

Often when given a problem, we try to model the scenario using
mathematics in the form of words, tables, graphs, and equations. One
method we can employ is to adapt the basic graphs of the toolkit functions
to build new models for a given scenario. There are systematic ways to alter
functions to construct appropriate models for the problems we are trying to
solve.

Identifying Vertical Shifts

One simple kind of transformation involves shifting the entire graph of a
function up, down, right, or left. The simplest shift is a vertical shift,
moving the graph up or down, because this transformation involves adding
a positive or negative constant to the function. In other words, we add the
same constant to the output value of the function regardless of the input.
For a function g(x) = f(x) + k, the function f (x) is shifted vertically k

units. See [link] for an example.

Vertical shift by k = 1 of the cube root function



To help you visualize the concept of a vertical shift, consider that
y = f (x). Therefore, f (x) + k is equivalent to y + k. Every unit of y is
replaced by y + k, so the y-value increases or decreases depending on the
value of k. The result is a shift upward or downward.

Note:
Vertical Shift
Given a function f (x), a new function g(x) = f(x) + k, where k is a
constant, is a vertical shift of the function f (x). All the output values
change by k units. If k is positive, the graph will shift up. If k is negative,
the graph will shift down.

Example:
Exercise:

Problem:
Adding a Constant to a Function

To regulate temperature in a green building, airflow vents near the
roof open and close throughout the day. [link] shows the area of open
vents V (in square feet) throughout the day in hours after midnight, t.
During the summer, the facilities manager decides to try to better
regulate temperature by increasing the amount of open vents by 20
square feet throughout the day and night. Sketch a graph of this new
function.

f(x) = 3√x.



Solution:

We can sketch a graph of this new function by adding 20 to each of
the output values of the original function. This will have the effect of
shifting the graph vertically up, as shown in [link].



Notice that in [link], for each input value, the output value has
increased by 20, so if we call the new function S (t),we could write
Equation:

S(t) = V (t) + 20

This notation tells us that, for any value of t,S(t) can be found by
evaluating the function V at the same input and then adding 20 to the
result. This defines S as a transformation of the function V , in this
case a vertical shift up 20 units. Notice that, with a vertical shift, the
input values stay the same and only the output values change. See
[link].

t 0 8 10 17 19 24

V (t) 0 0 220 220 0 0

S (t) 20 20 240 240 20 20

Note:
Given a tabular function, create a new row to represent a vertical shift.

1. Identify the output row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each output cell. Add a positive value for

up or a negative value for down.



Example:
Exercise:

Problem:
Shifting a Tabular Function Vertically

A function f (x) is given in [link]. Create a table for the function
g(x) = f(x) − 3.

x 2 4 6 8

f(x) 1 3 7 11

Solution:

The formula g(x) = f(x) − 3 tells us that we can find the output
values of g by subtracting 3 from the output values of f. For example:
Equation:

Subtracting 3 from each f (x) value, we can complete a table of
values for g (x) as shown in [link].

f(2) = 1 Given

g(x) = f(x) − 3 Given transformation

g(2) = f(2) − 3

= 1 − 3

= −2



x 2 4 6 8

f(x) 1 3 7 11

g(x) −2 0 4 8

Analysis

As with the earlier vertical shift, notice the input values stay the same and
only the output values change.

Note:
Exercise:

Problem:

The function h(t) = −4.9t2 + 30t gives the height h of a ball (in
meters) thrown upward from the ground after t seconds. Suppose the
ball was instead thrown from the top of a 10-m building. Relate this
new height function b(t) to h(t), and then find a formula for b(t).

Solution:
Equation:

b(t) = h(t) + 10 = −4.9t2 + 30t + 10

Identifying Horizontal Shifts

We just saw that the vertical shift is a change to the output, or outside, of
the function. We will now look at how changes to input, on the inside of the
function, change its graph and meaning. A shift to the input results in a



movement of the graph of the function left or right in what is known as a
horizontal shift, shown in [link].

For example, if f(x) = x2, then g(x) = (x − 2)2 is a new function. Each
input is reduced by 2 prior to squaring the function. The result is that the
graph is shifted 2 units to the right, because we would need to increase the
prior input by 2 units to yield the same output value as given in f.

Note:
Horizontal Shift
Given a function f, a new function g (x) = f (x − h), where h is a
constant, is a horizontal shift of the function f. If h is positive, the graph
will shift right. If h is negative, the graph will shift left.

Horizontal shift of the function f(x) = 3√x. Note that
h = +1 shifts the graph to the left, that is, towards

negative values of x.



Example:
Exercise:

Problem:
Adding a Constant to an Input

Returning to our building airflow example from [link], suppose that in
autumn the facilities manager decides that the original venting plan
starts too late, and wants to begin the entire venting program 2 hours
earlier. Sketch a graph of the new function.

Solution:

We can set V (t) to be the original program and F (t) to be the revised
program.
Equation:

In the new graph, at each time, the airflow is the same as the original
function V was 2 hours later. For example, in the original function V ,
the airflow starts to change at 8 a.m., whereas for the function F , the
airflow starts to change at 6 a.m. The comparable function values are
V (8) = F(6). See [link]. Notice also that the vents first opened to
220 ft2 at 10 a.m. under the original plan, while under the new plan
the vents reach 220 ft2 at 8 a.m., so V (10) = F(8).

In both cases, we see that, because F (t) starts 2 hours sooner,
h = −2.That means that the same output values are reached when
F(t) = V (t − (−2)) = V (t + 2).

V (t) =  the original venting plan

F (t) = starting 2 hrs sooner



Analysis

Note that V (t + 2) has the effect of shifting the graph to the left.

Horizontal changes or “inside changes” affect the domain of a function (the
input) instead of the range and often seem counterintuitive. The new
function F (t) uses the same outputs as V (t), but matches those outputs to
inputs 2 hours earlier than those of V (t). Said another way, we must add 2
hours to the input of V to find the corresponding output for
F : F(t) = V (t + 2).

Note:
Given a tabular function, create a new row to represent a horizontal
shift.

1. Identify the input row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each input cell.



Example:
Exercise:

Problem:
Shifting a Tabular Function Horizontally

A function f(x) is given in [link]. Create a table for the function
g(x) = f(x − 3).

x 2 4 6 8

f(x) 1 3 7 11

Solution:

The formula g(x) = f(x − 3) tells us that the output values of g are
the same as the output value of f  when the input value is 3 less than
the original value. For example, we know that f(2) = 1.To get the
same output from the function g, we will need an input value that is 3
larger. We input a value that is 3 larger for g(x) because the function
takes 3 away before evaluating the function f.
Equation:

We continue with the other values to create [link].

g(5) = f(5 − 3)

= f(2)

= 1



x 5 7 9 11

x − 3 2 4 6 8

f(x − 3) 1 3 7 11

g(x) 1 3 7 11

The result is that the function g(x) has been shifted to the right by 3.
Notice the output values for g(x) remain the same as the output values
for f(x), but the corresponding input values, x, have shifted to the
right by 3. Specifically, 2 shifted to 5, 4 shifted to 7, 6 shifted to 9,
and 8 shifted to 11.

Analysis

[link] represents both of the functions. We can see the horizontal shift in
each point.



Example:
Exercise:

Problem:
Identifying a Horizontal Shift of a Toolkit Function

[link] represents a transformation of the toolkit function f(x) = x2.
Relate this new function g(x) to f(x), and then find a formula for
g(x).



Solution:

Notice that the graph is identical in shape to the f(x) = x2 function,
but the x-values are shifted to the right 2 units. The vertex used to be
at (0,0), but now the vertex is at (2,0). The graph is the basic quadratic
function shifted 2 units to the right, so
Equation:

g(x) = f(x − 2)

Notice how we must input the value x = 2 to get the output value
y = 0; the x-values must be 2 units larger because of the shift to the
right by 2 units. We can then use the definition of the f(x) function to
write a formula for g(x) by evaluating f(x − 2).
Equation:

f(x) = x2

g(x) = f(x − 2)

g(x) = f(x − 2) = (x − 2)2



Analysis

To determine whether the shift is + 2 or − 2, consider a single reference
point on the graph. For a quadratic, looking at the vertex point is
convenient. In the original function, f(0) = 0. In our shifted function,
g(2) = 0.To obtain the output value of 0 from the function f, we need to
decide whether a plus or a minus sign will work to satisfy
g(2) = f(x − 2) = f(0) = 0. For this to work, we will need to subtract 2
units from our input values.

Example:
Exercise:

Problem:
Interpreting Horizontal versus Vertical Shifts

The function G(m) gives the number of gallons of gas required to
drive m miles. Interpret G(m) + 10 and G(m + 10).

Solution:

G(m) + 10 can be interpreted as adding 10 to the output, gallons.
This is the gas required to drive m miles, plus another 10 gallons of
gas. The graph would indicate a vertical shift.

G(m + 10) can be interpreted as adding 10 to the input, miles. So this
is the number of gallons of gas required to drive 10 miles more than
m miles. The graph would indicate a horizontal shift.

Note:
Exercise:



Problem:

Given the function f(x) = √x, graph the original function f(x) and
the transformation g(x) = f(x + 2) on the same axes. Is this a
horizontal or a vertical shift? Which way is the graph shifted and by
how many units?

Solution:

The graphs of f(x) and g(x) are shown below. The transformation is a
horizontal shift. The function is shifted to the left by 2 units.

Combining Vertical and Horizontal Shifts

Now that we have two transformations, we can combine them together.
Vertical shifts are outside changes that affect the output (y-) axis values and
shift the function up or down. Horizontal shifts are inside changes that
affect the input (x-) axis values and shift the function left or right.
Combining the two types of shifts will cause the graph of a function to shift
up or down and right or left.



Note:
Given a function and both a vertical and a horizontal shift, sketch the
graph.

1. Identify the vertical and horizontal shifts from the formula.
2. The vertical shift results from a constant added to the output. Move

the graph up for a positive constant and down for a negative constant.
3. The horizontal shift results from a constant added to the input. Move

the graph left for a positive constant and right for a negative constant.
4. Apply the shifts to the graph in either order.

Example:
Exercise:

Problem:
Graphing Combined Vertical and Horizontal Shifts

Given f(x) = |x|, sketch a graph of h(x) = f(x + 1) − 3.

Solution:

The function f is our toolkit absolute value function. We know that
this graph has a V shape, with the point at the origin. The graph of h
has transformed f in two ways: f(x + 1) is a change on the inside of
the function, giving a horizontal shift left by 1, and the subtraction by
3 in f(x + 1) − 3 is a change to the outside of the function, giving a
vertical shift down by 3. The transformation of the graph is illustrated
in [link].

Let us follow one point of the graph of f(x) = |x|.

The point(0, 0)is transformed first by shifting left 1 unit:
(0, 0) → (−1, 0)
The point(−1, 0)is transformed next by shifting down 3 units:
(−1, 0) → (−1,−3)



[link] shows the graph of h.



Note:
Exercise:

Problem:

Given f(x) = |x|, sketch a graph of h(x) = f(x − 2) + 4.

Solution:

Example:
Exercise:

Problem:
Identifying Combined Vertical and Horizontal Shifts



Write a formula for the graph shown in [link], which is a
transformation of the toolkit square root function.

Solution:

The graph of the toolkit function starts at the origin, so this graph has
been shifted 1 to the right and up 2. In function notation, we could
write that as
Equation:

h(x) = f(x − 1) + 2

Using the formula for the square root function, we can write
Equation:

h(x) = √x − 1 + 2

Analysis

Note that this transformation has changed the domain and range of the
function. This new graph has domain [1,∞) and range [2,∞).



Note:
Exercise:

Problem:

Write a formula for a transformation of the toolkit reciprocal function
f (x) = 1

x
that shifts the function’s graph one unit to the right and

one unit up.

Solution:

g (x) = 1
x−1 + 1

Graphing Functions Using Reflections about the Axes

Another transformation that can be applied to a function is a reflection over
the x- or y-axis. A vertical reflection reflects a graph vertically across the
x-axis, while a horizontal reflection reflects a graph horizontally across the
y-axis. The reflections are shown in [link].



Notice that the vertical reflection produces a new graph that is a mirror
image of the base or original graph about the x-axis. The horizontal
reflection produces a new graph that is a mirror image of the base or
original graph about the y-axis.

Note:
Reflections
Given a function f(x ), a new function g(x) = −f(x) is a vertical
reflection of the function f(x), sometimes called a reflection about (or
over, or through) the x-axis.

Vertical and horizontal reflections of a function.



Given a function f(x), a new function g(x) = f(−x) is a horizontal
reflection of the function f(x), sometimes called a reflection about the y-
axis.

Note:
Given a function, reflect the graph both vertically and horizontally.

1. Multiply all outputs by –1 for a vertical reflection. The new graph is a
reflection of the original graph about the x-axis.

2. Multiply all inputs by –1 for a horizontal reflection. The new graph is
a reflection of the original graph about the y-axis.

Example:
Exercise:

Problem:
Reflecting a Graph Horizontally and Vertically

Reflect the graph of s(t) = √t (a) vertically and (b) horizontally.

Solution:

a. Reflecting the graph vertically means that each output value will
be reflected over the horizontal t-axis as shown in [link].



Because each output value is the opposite of the original output
value, we can write
Equation:

V (t) = −s(t) or V (t) = −√t

Notice that this is an outside change, or vertical shift, that affects
the output s(t) values, so the negative sign belongs outside of the
function.

b. Reflecting horizontally means that each input value will be
reflected over the vertical axis as shown in [link].

Vertical reflection of the square root function



Because each input value is the opposite of the original input
value, we can write
Equation:

H(t) = s(−t) or H(t) = √−t

Notice that this is an inside change or horizontal change that
affects the input values, so the negative sign is on the inside of
the function.

Note that these transformations can affect the domain and range
of the functions. While the original square root function has
domain [0,∞) and range [0,∞), the vertical reflection gives the
V (t) function the range(−∞, 0] and the horizontal reflection
gives the H(t) function the domain(−∞, 0].

Note:
Exercise:

Horizontal reflection of the square root function



Problem:

Reflect the graph of f(x) = |x − 1| (a) vertically and (b) horizontally.

Solution:

a. 

b. 

Example:
Exercise:

Problem:
Reflecting a Tabular Function Horizontally and Vertically



A function f(x) is given as [link]. Create a table for the functions
below.

a. g(x) = −f(x)
b. h(x) = f(−x)

x 2 4 6 8

f(x) 1 3 7 11

Solution:

a. For g(x), the negative sign outside the function indicates a
vertical reflection, so the x-values stay the same and each output
value will be the opposite of the original output value. See [link].

x 2 4 6 8

g(x) –1 –3 –7 –11

b. For h(x), the negative sign inside the function indicates a
horizontal reflection, so each input value will be the opposite of
the original input value and the h(x) values stay the same as the
f(x) values. See [link].



x −2 −4 −6 −8

h(x) 1 3 7 11

Note:
Exercise:

Problem:

A function f(x) is given as [link]. Create a table for the functions
below.

a. g(x) = −f(x)
b. h(x) = f(−x)

x −2 0 2 4

f(x) 5 10 15 20

Solution:

a. g(x) = −f(x)



x -2 0 2 4

g(x) −5 −10 −15 −20

b. h(x) = f(−x)

x -2 0 2 4

h(x) 15 10 5 unknown

Example:
Exercise:

Problem:
Applying a Learning Model Equation

A common model for learning has an equation similar to 
k(t) = −2−t + 1,  where k is the percentage of mastery that can be
achieved after t practice sessions. This is a transformation of the
function f(t) = 2t shown in [link]. Sketch a graph of k(t).



Solution:

This equation combines three transformations into one equation.

A horizontal reflection:f(−t) = 2−t

A vertical reflection: − f(−t) = −2−t

A vertical shift: − f(−t) + 1 = −2−t + 1

We can sketch a graph by applying these transformations one at a time
to the original function. Let us follow two points through each of the
three transformations. We will choose the points (0, 1) and (1, 2).

1. First, we apply a horizontal reflection: (0, 1) (–1, 2).
2. Then, we apply a vertical reflection: (0, −1) (-1, –2).
3. Finally, we apply a vertical shift: (0, 0) (-1, -1).



This means that the original points, (0,1) and (1,2) become (0,0) and
(-1,-1) after we apply the transformations.

In [link], the first graph results from a horizontal reflection. The
second results from a vertical reflection. The third results from a
vertical shift up 1 unit.

Analysis

As a model for learning, this function would be limited to a domain of
t ≥ 0, with corresponding range [0, 1).

Note:
Exercise:

Problem:

Given the toolkit function f(x) = x2, graph g(x) = −f(x) and
h(x) = f(−x). Take note of any surprising behavior for these
functions.

Solution:



Notice: g(x) = f(−x) looks the same as f(x).

Determining Even and Odd Functions

Some functions exhibit symmetry so that reflections result in the original
graph. For example, horizontally reflecting the toolkit functions f(x) = x2

or f(x) = |x| will result in the original graph. We say that these types of
graphs are symmetric about the y-axis. Functions whose graphs are
symmetric about the y-axis are called even functions.

If the graphs of f(x) = x3 or f(x) = 1
x

were reflected over both axes, the
result would be the original graph, as shown in [link].



We say that these graphs are symmetric about the origin. A function with a
graph that is symmetric about the origin is called an odd function.

Note: A function can be neither even nor odd if it does not exhibit either
symmetry. For example, f(x) = 2x is neither even nor odd. Also, the only
function that is both even and odd is the constant function f(x) = 0.

Note:
Even and Odd Functions
A function is called an even function if for every input x
Equation:

f(x) = f(−x)

The graph of an even function is symmetric about the y-axis.
A function is called an odd function if for every input x
Equation:

(a) The cubic toolkit function (b) Horizontal reflection of the cubic
toolkit function (c) Horizontal and vertical reflections reproduce the

original cubic function.



f(x) = −f(−x)

The graph of an odd function is symmetric about the origin.

Note:
Given the formula for a function, determine if the function is even,
odd, or neither.

1. Determine whether the function satisfies f(x) = f(−x). If it does, it
is even.

2. Determine whether the function satisfies f(x) = −f(−x). If it does,
it is odd.

3. If the function does not satisfy either rule, it is neither even nor odd.

Example:
Exercise:

Problem:
Determining whether a Function Is Even, Odd, or Neither

Is the function f(x) = x3 + 2x even, odd, or neither?

Solution:

Without looking at a graph, we can determine whether the function is
even or odd by finding formulas for the reflections and determining if
they return us to the original function. Let’s begin with the rule for
even functions.
Equation:

f(−x) = (−x)3 + 2(−x) = −x3 − 2x



This does not return us to the original function, so this function is not
even. We can now test the rule for odd functions.
Equation:

−f(−x) = − (−x3 − 2x) = x3 + 2x

Because − f(−x) = f(x), this is an odd function.

Analysis

Consider the graph of f in [link]. Notice that the graph is symmetric about
the origin. For every point (x, y) on the graph, the corresponding point
(−x, −y) is also on the graph. For example, (1, 3) is on the graph of f,

and the corresponding point(−1,−3)is also on the graph.

Note:
Exercise:



Problem: Is the function f(s) = s4 + 3s2 + 7 even, odd, or neither?

Solution:

even

Graphing Functions Using Stretches and Compressions

Adding a constant to the inputs or outputs of a function changed the
position of a graph with respect to the axes, but it did not affect the shape of
a graph. We now explore the effects of multiplying the inputs or outputs by
some quantity.

We can transform the inside (input values) of a function or we can
transform the outside (output values) of a function. Each change has a
specific effect that can be seen graphically.

Vertical Stretches and Compressions

When we multiply a function by a positive constant, we get a function
whose graph is stretched or compressed vertically in relation to the graph of
the original function. If the constant is greater than 1, we get a vertical
stretch; if the constant is between 0 and 1, we get a vertical compression.
[link] shows a function multiplied by constant factors 2 and 0.5 and the
resulting vertical stretch and compression.



Note:
Vertical Stretches and Compressions
Given a function f(x), a new function g(x) = af(x), where a is a
constant, is a vertical stretch or vertical compression of the function
f(x).

If a > 1, then the graph will be stretched.
If 0 < a < 1, then the graph will be compressed.
If a < 0, then there will be combination of a vertical stretch or
compression with a vertical reflection.

Note:
Given a function, graph its vertical stretch.

Vertical stretch and compression



1. Identify the value of a.
2. Multiply all range values by a.

3. If a > 1, the graph is stretched by a factor of a.

If 0 < a < 1, the graph is compressed by a factor of a.

If a < 0, the graph is either stretched or compressed and also
reflected about the x-axis.

Example:
Exercise:

Problem:
Graphing a Vertical Stretch

A function P (t)models the population of fruit flies. The graph is
shown in [link].



A scientist is comparing this population to another population, Q,
whose growth follows the same pattern, but is twice as large. Sketch a
graph of this population.

Solution:

Because the population is always twice as large, the new population’s
output values are always twice the original function’s output values.
Graphically, this is shown in [link].

If we choose four reference points, (0, 1), (3, 3), (6, 2) and (7, 0) we
will multiply all of the outputs by 2.

The following shows where the new points for the new graph will be
located.
Equation:

(0,  1) → (0,  2)

(3,  3) → (3,  6)

(6,  2) → (6,  4)

(7,  0) → (7,  0)



Symbolically, the relationship is written as
Equation:

Q(t) = 2P(t)

This means that for any input t, the value of the function Q is twice
the value of the function P . Notice that the effect on the graph is a
vertical stretching of the graph, where every point doubles its distance
from the horizontal axis. The input values, t, stay the same while the
output values are twice as large as before.

Note:
Given a tabular function and assuming that the transformation is a
vertical stretch or compression, create a table for a vertical
compression.

1. Determine the value of a.



2. Multiply all of the output values by a.

Example:
Exercise:

Problem:
Finding a Vertical Compression of a Tabular Function

A function f is given as [link]. Create a table for the function
g(x) = 1

2
f(x).

x 2 4 6 8

f(x) 1 3 7 11

Solution:

The formula g(x) = 1
2

f(x) tells us that the output values of g are half
of the output values of f with the same inputs. For example, we know
that f(4) = 3.Then
Equation:

g(4) =
1

2
f(4) =

1

2
(3) =

3

2

We do the same for the other values to produce [link].



x 2 4 6 8

g(x) 1
2

3
2

7
2

11
2

Analysis

The result is that the function g(x) has been compressed vertically by 1
2 .

Each output value is divided in half, so the graph is half the original height.

Note:
Exercise:

Problem:

A function f is given as [link]. Create a table for the function
g(x) = 3

4
f(x).

x 2 4 6 8

f(x) 12 16 20 0

Solution:



x 2 4 6 8

g(x) 9 12 15 0

Example:
Exercise:

Problem:
Recognizing a Vertical Stretch

The graph in [link] is a transformation of the toolkit function
f(x) = x3. Relate this new function g(x) to f(x), and then find a
formula for g(x).



Solution:

When trying to determine a vertical stretch or shift, it is helpful to
look for a point on the graph that is relatively clear. In this graph, it
appears that g(2) = 2.With the basic cubic function at the same input,
f(2) = 23 = 8.  Based on that, it appears that the outputs of g are 1

4
the outputs of the function f because g(2) = 1

4 f(2). From this we
can fairly safely conclude that g(x) = 1

4 f(x).

We can write a formula for g by using the definition of the function f.
Equation:

g(x) =
1

4
f(x) =

1

4
x3

Note:
Exercise:

Problem:

Write the formula for the function that we get when we stretch the
identity toolkit function by a factor of 3, and then shift it down by 2
units.

Solution:

g(x) = 3x − 2

Horizontal Stretches and Compressions

Now we consider changes to the inside of a function. When we multiply a
function’s input by a positive constant, we get a function whose graph is



stretched or compressed horizontally in relation to the graph of the original
function. If the constant is between 0 and 1, we get a horizontal stretch; if
the constant is greater than 1, we get a horizontal compression of the
function.

Given a function y = f(x), the form y = f(bx) results in a horizontal
stretch or compression. Consider the function y = x2. Observe [link]. The
graph of y = (0.5x)2 is a horizontal stretch of the graph of the function
y = x2 by a factor of 2. The graph of y = (2x)2 is a horizontal compression
of the graph of the function y = x2 by a factor of 2.



Note:
Horizontal Stretches and Compressions
Given a function f(x), a new function g(x) = f(bx), where b is a
constant, is a horizontal stretch or horizontal compression of the
function f(x).

If b > 1, then the graph will be compressed by 1
b
.

If 0 < b < 1, then the graph will be stretched by 1
b
.

If b < 0, then there will be combination of a horizontal stretch or
compression with a horizontal reflection.

Note:
Given a description of a function, sketch a horizontal compression or
stretch.

1. Write a formula to represent the function.
2. Set g(x) = f(bx)where b > 1 for a compression or 0 < b < 1  for a

stretch.

Example:
Exercise:

Problem:
Graphing a Horizontal Compression

Suppose a scientist is comparing a population of fruit flies to a
population that progresses through its lifespan twice as fast as the
original population. In other words, this new population, R, will
progress in 1 hour the same amount as the original population does in
2 hours, and in 2 hours, it will progress as much as the original
population does in 4 hours. Sketch a graph of this population.



Solution:

Symbolically, we could write
Equation:

See [link] for a graphical comparison of the original population and
the compressed population.

Analysis

Note that the effect on the graph is a horizontal compression where all
input values are half of their original distance from the vertical axis.

Example:
Exercise:

Problem:

R(1) = P(2),

R(2) = P(4),  and in general,

R(t) = P(2t).

(a) Original population graph (b) Compressed population graph



Finding a Horizontal Stretch for a Tabular Function

A function f(x) is given as [link]. Create a table for the function
g(x) = f ( 1

2
x).

x 2 4 6 8

f(x) 1 3 7 11

Solution:

The formula g(x) = f ( 1
2 x) tells us that the output values for g are

the same as the output values for the function f at an input half the
size. Notice that we do not have enough information to determine
g(2) because g(2) = f ( 1

2
⋅ 2) = f(1), and we do not have a value

for f(1) in our table. Our input values to g will need to be twice as
large to get inputs for f that we can evaluate. For example, we can
determine g(4).
Equation:

g(4) = f (
1

2
⋅ 4) = f(2) = 1

We do the same for the other values to produce [link].



x 4 8 12 16

g(x) 1 3 7 11

[link] shows the graphs of both of these sets of points.

Analysis

Because each input value has been doubled, the result is that the function
g(x) has been stretched horizontally by a factor of 2.

Example:
Exercise:

Problem:
Recognizing a Horizontal Compression on a Graph

Relate the function g(x) to f(x) in [link].



Solution:

The graph of g(x) looks like the graph of f(x) horizontally
compressed. Because f(x) ends at (6, 4) and g(x) ends at (2, 4), we
can see that the x-values have been compressed by 1

3 , because
6 ( 1

3 ) = 2.We might also notice that g(2) = f (6) and
g(1) = f (3). Either way, we can describe this relationship as
g(x) = f (3x). This is a horizontal compression by 1

3 .

Analysis

Notice that the coefficient needed for a horizontal stretch or compression is
the reciprocal of the stretch or compression. So to stretch the graph
horizontally by a scale factor of 4, we need a coefficient of 1

4 in our
function: f ( 1

4 x). This means that the input values must be four times
larger to produce the same result, requiring the input to be larger, causing
the horizontal stretching.

Note:
Exercise:



Problem:

Write a formula for the toolkit square root function horizontally
stretched by a factor of 3.

Solution:

g(x) = f ( 1
3 x) so using the square root function we get

g(x) = √ 1
3 x

Performing a Sequence of Transformations

When combining transformations, it is very important to consider the order
of the transformations. For example, vertically shifting by 3 and then
vertically stretching by 2 does not create the same graph as vertically
stretching by 2 and then vertically shifting by 3, because when we shift
first, both the original function and the shift get stretched, while only the
original function gets stretched when we stretch first.

When we see an expression such as 2f(x) + 3, which transformation
should we start with? The answer here follows nicely from the order of
operations. Given the output value of f(x), we first multiply by 2, causing
the vertical stretch, and then add 3, causing the vertical shift. In other
words, multiplication before addition.

Horizontal transformations are a little trickier to think about. When we
write g(x) = f(2x + 3), for example, we have to think about how the
inputs to the function g relate to the inputs to the function f. Suppose we
know f(7) = 12.What input to g would produce that output? In other
words, what value of x will allow g(x) = f(2x + 3) = 12?We would need
2x + 3 = 7.To solve for x, we would first subtract 3, resulting in a
horizontal shift, and then divide by 2, causing a horizontal compression.



This format ends up being very difficult to work with, because it is usually
much easier to horizontally stretch a graph before shifting. We can work
around this by factoring inside the function.
Equation:

f(bx + p) = f (b(x +
p

b
))

Let’s work through an example.
Equation:

f (x) = (2x + 4)2

We can factor out a 2.
Equation:

f (x) = (2 (x + 2))2

Now we can more clearly observe a horizontal shift to the left 2 units and a
horizontal compression. Factoring in this way allows us to horizontally
stretch first and then shift horizontally.

Note:
Combining Transformations
When combining vertical transformations written in the form af(x) + k,
first vertically stretch by a and then vertically shift by k.
When combining horizontal transformations written in the form
f(bx − h), first horizontally shift by h and then horizontally stretch by 1

b
.

When combining horizontal transformations written in the form
f(b(x − h)), first horizontally stretch by 1

b
and then horizontally shift by

h.
Horizontal and vertical transformations are independent. It does not matter
whether horizontal or vertical transformations are performed first.



Example:
Exercise:

Problem:
Finding a Triple Transformation of a Tabular Function

Given [link] for the function f(x), create a table of values for the
function g(x) = 2f(3x) + 1.

x 6 12 18 24

f(x) 10 14 15 17

Solution:

There are three steps to this transformation, and we will work from
the inside out. Starting with the horizontal transformations, f(3x) is a
horizontal compression by 1

3 , which means we multiply each x-value
by 1

3 .See [link].

x 2 4 6 8

f(3x) 10 14 15 17

Looking now to the vertical transformations, we start with the vertical
stretch, which will multiply the output values by 2. We apply this to



the previous transformation. See [link].

x 2 4 6 8

2f(3x) 20 28 30 34

Finally, we can apply the vertical shift, which will add 1 to all the
output values. See [link].

x 2 4 6 8

g(x) = 2f(3x) + 1 21 29 31 35

Example:
Exercise:

Problem:
Finding a Triple Transformation of a Graph

Use the graph of f (x) in [link] to sketch a graph of
k(x) = f ( 1

2
x + 1) − 3.



Solution:

To simplify, let’s start by factoring out the inside of the function.
Equation:

f (
1

2
x + 1)− 3 = f (

1

2
(x + 2))− 3

By factoring the inside, we can first horizontally stretch by 2, as
indicated by the 1

2 on the inside of the function. Remember that twice
the size of 0 is still 0, so the point (0,2) remains at (0,2) while the
point (2,0) will stretch to (4,0). See [link].



Next, we horizontally shift left by 2 units, as indicated by x + 2. See
[link].



Last, we vertically shift down by 3 to complete our sketch, as
indicated by the − 3 on the outside of the function. See [link].



Note:
Access this online resource for additional instruction and practice with
transformation of functions.

Function Transformations

Key Equations

http://openstaxcollege.org/l/functrans


Vertical shift g(x) = f(x) + k (up for k > 0)

Horizontal shift g(x) = f(x − h)(right for h > 0)

Vertical reflection g(x) = −f(x)

Horizontal reflection g(x) = f(−x)

Vertical stretch g(x) = af(x) (a > 0 )

Vertical compression g(x) = af(x) (0 < a < 1)

Horizontal stretch g(x) = f(bx)(0 < b < 1)

Horizontal compression g(x) = f(bx) (b > 1)

Key Concepts

A function can be shifted vertically by adding a constant to the output.
See [link] and [link].
A function can be shifted horizontally by adding a constant to the
input. See [link], [link], and [link].
Relating the shift to the context of a problem makes it possible to
compare and interpret vertical and horizontal shifts. See [link].
Vertical and horizontal shifts are often combined. See [link] and [link].
A vertical reflection reflects a graph about the x-axis. A graph can be
reflected vertically by multiplying the output by –1.
A horizontal reflection reflects a graph about the y-axis. A graph can
be reflected horizontally by multiplying the input by –1.
A graph can be reflected both vertically and horizontally. The order in
which the reflections are applied does not affect the final graph. See
[link].
A function presented in tabular form can also be reflected by
multiplying the values in the input and output rows or columns
accordingly. See [link].



A function presented as an equation can be reflected by applying
transformations one at a time. See [link].
Even functions are symmetric about the y-axis, whereas odd functions
are symmetric about the origin.
Even functions satisfy the condition f(x) = f(−x).
Odd functions satisfy the condition f(x) = −f(−x).
A function can be odd, even, or neither. See [link].
A function can be compressed or stretched vertically by multiplying
the output by a constant. See [link], [link], and [link].
A function can be compressed or stretched horizontally by multiplying
the input by a constant. See [link], [link], and [link].
The order in which different transformations are applied does affect
the final function. Both vertical and horizontal transformations must be
applied in the order given. However, a vertical transformation may be
combined with a horizontal transformation in any order. See [link] and
[link].

Section Exercises

Verbal

Exercise:

Problem:

When examining the formula of a function that is the result of multiple
transformations, how can you tell a horizontal shift from a vertical
shift?

Solution:

A horizontal shift results when a constant is added to or subtracted
from the input. A vertical shifts results when a constant is added to or
subtracted from the output.

Exercise:



Problem:

When examining the formula of a function that is the result of multiple
transformations, how can you tell a horizontal stretch from a vertical
stretch?

Exercise:

Problem:

When examining the formula of a function that is the result of multiple
transformations, how can you tell a horizontal compression from a
vertical compression?

Solution:

A horizontal compression results when a constant greater than 1 is
multiplied by the input. A vertical compression results when a constant
between 0 and 1 is multiplied by the output.

Exercise:

Problem:

When examining the formula of a function that is the result of multiple
transformations, how can you tell a reflection with respect to the x-axis
from a reflection with respect to the y-axis?

Exercise:

Problem:

How can you determine whether a function is odd or even from the
formula of the function?

Solution:

For a function f, substitute (−x) for (x) in f(x). Simplify. If the
resulting function is the same as the original function, f(−x) = f(x),
then the function is even. If the resulting function is the opposite of the
original function, f(−x) = −f(x), then the original function is odd.



If the function is not the same or the opposite, then the function is
neither odd nor even.

Algebraic

Exercise:

Problem:

Write a formula for the function obtained when the graph of
f(x) = √x is shifted up 1 unit and to the left 2 units.

Exercise:

Problem:

Write a formula for the function obtained when the graph of
f(x) = |x|  is shifted down 3 units and to the right 1 unit.

Solution:

g(x) = |x − 1| − 3

Exercise:

Problem:

Write a formula for the function obtained when the graph of
f(x) = 1

x
is shifted down 4 units and to the right 3 units.

Exercise:

Problem:

Write a formula for the function obtained when the graph of
f(x) = 1

x2 is shifted up 2 units and to the left 4 units.

Solution:



g(x) = 1
(x+4)2

+ 2

For the following exercises, describe how the graph of the function is a
transformation of the graph of the original function f.
Exercise:

Problem: y = f(x − 49)

Exercise:

Problem: y = f(x + 43)

Solution:

The graph of f(x + 43) is a horizontal shift to the left 43 units of the
graph of f.

Exercise:

Problem: y = f(x + 3)

Exercise:

Problem: y = f(x − 4)

Solution:

The graph of f(x − 4) is a horizontal shift to the right 4 units of the
graph of f.

Exercise:

Problem: y = f(x) + 5

Exercise:

Problem: y = f(x) + 8



Solution:

The graph of f(x) + 8 is a vertical shift up 8 units of the graph of f.

Exercise:

Problem: y = f(x) − 2

Exercise:

Problem: y = f(x) − 7

Solution:

The graph of f(x) − 7 is a vertical shift down 7 units of the graph of f.

Exercise:

Problem: y = f(x − 2) + 3

Exercise:

Problem: y = f(x + 4) − 1

Solution:

The graph of f(x + 4) − 1 is a horizontal shift to the left 4 units and a
vertical shift down 1 unit of the graph of f.

For the following exercises, determine the interval(s) on which the function
is increasing and decreasing.
Exercise:

Problem: f(x) = 4(x + 1)2 − 5

Exercise:



Problem: g(x) = 5(x + 3)2 − 2

Solution:

decreasing on (−∞,−3) and increasing on (−3,∞)

Exercise:

Problem: a(x) = √−x + 4

Exercise:

Problem: k(x) = −3√x − 1

Solution:

decreasing on (0, ∞)

Graphical

For the following exercises, use the graph of f(x) = 2x shown in [link] to
sketch a graph of each transformation of f(x).



Exercise:

Problem: g(x) = 2x + 1

Exercise:

Problem: h(x) = 2x − 3

Solution:



Exercise:

Problem: w(x) = 2x−1

For the following exercises, sketch a graph of the function as a
transformation of the graph of one of the toolkit functions.
Exercise:

Problem: f(t) = (t + 1)2 − 3

Solution:



Exercise:

Problem: h(x) = |x − 1| + 4

Exercise:

Problem: k(x) = (x − 2)3 − 1

Solution:





Exercise:

Problem: m(t) = 3 +√t + 2

Numeric

Exercise:

Problem:

Tabular representations for the functions f, g, and h are given below.
Write g(x) and h(x) as transformations of f(x).

x −2 −1 0 1 2

f(x) −2 −1 −3 1 2

x −1 0 1 2 3

g(x) −2 −1 −3 1 2



x −2 −1 0 1 2

h(x) −1 0 −2 2 3

Solution:

g(x) = f(x − 1), h(x) = f(x) + 1

Exercise:

Problem:

Tabular representations for the functions f, g, and h are given below.
Write g(x) and h(x) as transformations of f(x).

x −2 −1 0 1 2

f(x) −1 −3 4 2 1

x −3 −2 −1 0 1

g(x) −1 −3 4 2 1



x −2 −1 0 1 2

h(x) −2 −4 3 1 0

For the following exercises, write an equation for each graphed function by
using transformations of the graphs of one of the toolkit functions.
Exercise:

Problem:

Solution:

f(x) = |x − 3| − 2

Exercise:

Problem:



Exercise:

Problem:

Solution:

f(x) = √x + 3 − 1



Exercise:

Problem:

Exercise:

Problem:



Solution:

f(x) = (x − 2)2

Exercise:

Problem:



Exercise:

Problem:

Solution:

f(x) = |x + 3| − 2

Exercise:

Problem:



For the following exercises, use the graphs of transformations of the square
root function to find a formula for each of the functions.
Exercise:

Problem:

Solution:



f(x) = −√x

Exercise:

Problem:

For the following exercises, use the graphs of the transformed toolkit
functions to write a formula for each of the resulting functions.
Exercise:

Problem:

Solution:



f(x) = −(x + 1)2 + 2

Exercise:

Problem:

Exercise:

Problem:

Solution:

f(x) = √−x + 1

Exercise:

Problem:



For the following exercises, determine whether the function is odd, even, or
neither.
Exercise:

Problem: f(x) = 3x4

Solution:

even

Exercise:

Problem:g(x) = √x

Exercise:

Problem: h(x) = 1
x
+ 3x

Solution:

odd

Exercise:



Problem:f(x) = (x − 2)2

Exercise:

Problem: g(x) = 2x4

Solution:

even

Exercise:

Problem:h(x) = 2x − x3

For the following exercises, describe how the graph of each function is a
transformation of the graph of the original function f.
Exercise:

Problem: g(x) = −f(x)

Solution:

The graph of g is a vertical reflection (across the x-axis) of the graph
of f.

Exercise:

Problem: g(x) = f(−x)

Exercise:

Problem: g(x) = 4f(x)

Solution:

The graph of g is a vertical stretch by a factor of 4 of the graph of f.



Exercise:

Problem: g(x) = 6f(x)

Exercise:

Problem: g(x) = f(5x)

Solution:

The graph of g is a horizontal compression by a factor of 1
5 of the

graph of f.

Exercise:

Problem: g(x) = f(2x)

Exercise:

Problem: g(x) = f ( 1
3 x)

Solution:

The graph of g is a horizontal stretch by a factor of 3 of the graph of f.

Exercise:

Problem: g(x) = f ( 1
5 x)

Exercise:

Problem: g(x) = 3f (−x)

Solution:

The graph of g is a horizontal reflection across the y-axis and a vertical
stretch by a factor of 3 of the graph of f.



Exercise:

Problem: g(x) = −f(3x)

For the following exercises, write a formula for the function g that results
when the graph of a given toolkit function is transformed as described.
Exercise:

Problem:

The graph of f(x) = |x| is reflected over the y-axis and horizontally
compressed by a factor of 1

4  .

Solution:

g(x) = | − 4x|

Exercise:

Problem:

The graph of f(x) = √x is reflected over the x-axis and horizontally
stretched by a factor of 2.

Exercise:

Problem:

The graph of f(x) = 1
x2 is vertically compressed by a factor of 1

3 ,
then shifted to the left 2 units and down 3 units.

Solution:

g(x) = 1
3(x+2)2

− 3

Exercise:



Problem:

The graph of f(x) = 1
x

is vertically stretched by a factor of 8, then
shifted to the right 4 units and up 2 units.

Exercise:

Problem:

The graph of f(x) = x2 is vertically compressed by a factor of 1
2 , then

shifted to the right 5 units and up 1 unit.

Solution:

g(x) = 1
2
(x − 5)2 + 1

Exercise:

Problem:

The graph of f(x) = x2 is horizontally stretched by a factor of 3, then
shifted to the left 4 units and down 3 units.

For the following exercises, describe how the formula is a transformation of
a toolkit function. Then sketch a graph of the transformation.
Exercise:

Problem: g(x) = 4(x + 1)2 − 5

Solution:

The graph of the function f(x) = x2 is shifted to the left 1 unit,
stretched vertically by a factor of 4, and shifted down 5 units.



Exercise:

Problem: g(x) = 5(x + 3)2 − 2

Exercise:



Problem: h(x) = −2|x − 4| + 3

Solution:

The graph of f(x) = |x| is stretched vertically by a factor of 2, shifted
horizontally 4 units to the right, reflected across the horizontal axis,
and then shifted vertically 3 units up.



Exercise:

Problem: k(x) = −3√x − 1

Exercise:



Problem: m(x) = 1
2 x3

Solution:

The graph of the function f(x) = x3 is compressed vertically by a
factor of 1

2 .



Exercise:

Problem: n(x) = 1
3 x − 2

Exercise: ∣ ∣



Problem: p (x) = ( 1
3 x)

3
− 3

Solution:

The graph of the function is stretched horizontally by a factor of 3 and
then shifted vertically downward by 3 units.



Exercise:

Problem: q (x) = ( 1
4 x)

3
+ 1

Exercise:



Problem: a(x) = √−x + 4

Solution:

The graph of f(x) = √x is shifted right 4 units and then reflected
across the vertical line x = 4.



For the following exercises, use the graph in [link] to sketch the given
transformations.



Exercise:

Problem: g(x) = f(x) − 2

Exercise:

Problem: g(x) = −f(x)

Solution:



Exercise:

Problem: g(x) = f(x + 1)

Exercise:

Problem: g(x) = f(x − 2)

Solution:



Glossary

even function
a function whose graph is unchanged by horizontal reflection,
f(x) = f(−x), and is symmetric about the y-axis

horizontal compression
a transformation that compresses a function’s graph horizontally, by
multiplying the input by a constant b > 1

horizontal reflection
a transformation that reflects a function’s graph across the y-axis by
multiplying the input by−1

horizontal shift



a transformation that shifts a function’s graph left or right by adding a
positive or negative constant to the input

horizontal stretch
a transformation that stretches a function’s graph horizontally by
multiplying the input by a constant 0 < b < 1

odd function
a function whose graph is unchanged by combined horizontal and
vertical reflection, f(x) = −f(−x), and is symmetric about the origin

vertical compression
a function transformation that compresses the function’s graph
vertically by multiplying the output by a constant 0 < a < 1

vertical reflection
a transformation that reflects a function’s graph across the x-axis by
multiplying the output by−1

vertical shift
a transformation that shifts a function’s graph up or down by adding a
positive or negative constant to the output

vertical stretch
a transformation that stretches a function’s graph vertically by
multiplying the output by a constant a > 1



Absolute Value Functions
In this section you will:

Graph an absolute value function.
Solve an absolute value equation.
Solve an absolute value inequality.

Until the 1920s, the so-called spiral nebulae were believed to be clouds of dust and gas in our own galaxy,
some tens of thousands of light years away. Then, astronomer Edwin Hubble proved that these objects are
galaxies in their own right, at distances of millions of light years. Today, astronomers can detect galaxies that
are billions of light years away. Distances in the universe can be measured in all directions. As such, it is useful
to consider distance as an absolute value function. In this section, we will investigate absolute value functions.

Understanding Absolute Value

Recall that in its basic form f(x) = |x|, the absolute value function, is one of our toolkit functions. The
absolute value function is commonly thought of as providing the distance the number is from zero on a number
line. Algebraically, for whatever the input value is, the output is the value without regard to sign.

Note:
Absolute Value Function
The absolute value function can be defined as a piecewise function
Equation:

f(x) = |x| = {

Example:

Distances in deep space can be measured in all
directions. As such, it is useful to consider distance in

terms of absolute values. (credit: "s58y"/Flickr)

x if x ≥ 0

−x if x < 0



Exercise:

Problem:
Determine a Number within a Prescribed Distance

Describe all values x within or including a distance of 4 from the number 5.

Solution:

We want the distance between x and 5 to be less than or equal to 4. We can draw a number line, such as
the one in [link], to represent the condition to be satisfied.

The distance from x to 5 can be represented using the absolute value as |x − 5|. We want the values of x

that satisfy the condition |x − 5| ≤ 4.

Analysis

Note that
Equation:

So |x − 5| ≤ 4 is equivalent to 1 ≤ x ≤ 9.

However, mathematicians generally prefer absolute value notation.

Note:
Exercise:

Problem:Describe all values x within a distance of 3 from the number 2.

Solution:

|x − 2| ≤ 3

Example:
Exercise:

Problem:
Resistance of a Resistor

Electrical parts, such as resistors and capacitors, come with specified values of their operating
parameters: resistance, capacitance, etc. However, due to imprecision in manufacturing, the actual values
of these parameters vary somewhat from piece to piece, even when they are supposed to be the same. The
best that manufacturers can do is to try to guarantee that the variations will stay within a specified range,
often±1%, ± 5%, or ± 10%.

−4 ≤ x − 5 x − 5 ≤ 4

1 ≤ x x ≤ 9



Suppose we have a resistor rated at 680 ohms, ± 5%. Use the absolute value function to express the
range of possible values of the actual resistance.

Solution:

5% of 680 ohms is 34 ohms. The absolute value of the difference between the actual and nominal
resistance should not exceed the stated variability, so, with the resistance R in ohms,
Equation:

|R − 680| ≤ 34

Note:
Exercise:

Problem:

Students who score within 20 points of 80 will pass a test. Write this as a distance from 80 using absolute
value notation.

Solution:

using the variable p for passing, |p − 80| ≤ 20

Graphing an Absolute Value Function

The most significant feature of the absolute value graph is the corner point at which the graph changes
direction. This point is shown at the origin in [link].

[link] shows the graph of y = 2 |x– 3| + 4.The graph of y = |x| has been shifted right 3 units, vertically
stretched by a factor of 2, and shifted up 4 units. This means that the corner point is located at (3, 4) for this
transformed function.



Example:
Exercise:

Problem:
Writing an Equation for an Absolute Value Function

Write an equation for the function graphed in [link].

Solution:

The basic absolute value function changes direction at the origin, so this graph has been shifted to the
right 3 units and down 2 units from the basic toolkit function. See [link].



We also notice that the graph appears vertically stretched, because the width of the final graph on a
horizontal line is not equal to 2 times the vertical distance from the corner to this line, as it would be for
an unstretched absolute value function. Instead, the width is equal to 1 times the vertical distance as
shown in [link].

From this information we can write the equation
Equation:

Analysis

Note that these equations are algebraically equivalent—the stretch for an absolute value function can be
written interchangeably as a vertical or horizontal stretch or compression.

Note:
If we couldn’t observe the stretch of the function from the graphs, could we algebraically determine it?

f(x) = 2|x − 3| − 2, treating the stretch as a vertical stretch, or

f(x) = |2(x − 3)| − 2, treating the stretch as a horizontal compression.



Yes. If we are unable to determine the stretch based on the width of the graph, we can solve for the stretch
factor by putting in a known pair of values for x and f(x).
Equation:

f(x) = a|x − 3| − 2

Now substituting in the point (1, 2)
Equation:

Note:
Exercise:

Problem:

Write the equation for the absolute value function that is horizontally shifted left 2 units, is vertically
flipped, and vertically shifted up 3 units.

Solution:

f(x) = − |x + 2| + 3

Note:
Do the graphs of absolute value functions always intersect the vertical axis? The horizontal axis?
Yes, they always intersect the vertical axis. The graph of an absolute value function will intersect the vertical
axis when the input is zero.
No, they do not always intersect the horizontal axis. The graph may or may not intersect the horizontal axis,
depending on how the graph has been shifted and reflected. It is possible for the absolute value function to
intersect the horizontal axis at zero, one, or two points (see [link]).

2 = a |1 − 3| − 2

4 = 2a

a = 2



Solving an Absolute Value Equation

Now that we can graph an absolute value function, we will learn how to solve an absolute value equation. To
solve an equation such as 8 = |2x − 6|, we notice that the absolute value will be equal to 8 if the quantity
inside the absolute value is 8 or -8. This leads to two different equations we can solve independently.
Equation:

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to
identify numbers or points on a line that are at a specified distance from a given reference point.

An absolute value equation is an equation in which the unknown variable appears in absolute value bars. For
example,
Equation:

Note:
Solutions to Absolute Value Equations
For real numbers A and B, an equation of the form |A| = B, with B ≥ 0, will have solutions when A = B or
A = −B. If B < 0, the equation |A| = B has no solution.

(a) The absolute value function does not intersect the horizontal axis. (b) The absolute value function
intersects the horizontal axis at one point. (c) The absolute value function intersects the horizontal axis at

two points.

2x − 6 = 8 or 2x − 6 = −8

2x = 14 2x = −2

x = 7 x = −1

|x| = 4,

|2x − 1| = 3

|5x + 2| − 4 = 9



Note:
Given the formula for an absolute value function, find the horizontal intercepts of its graph.

1. Isolate the absolute value term.
2. Use |A| = B to write A = B or−A = B, assuming B > 0.
3. Solve for x.

Example:
Exercise:

Problem:
Finding the Zeros of an Absolute Value Function

For the function f(x) = |4x + 1| − 7, find the values of x such that  f(x) = 0.

Solution:
Equation:

The function outputs 0 when x = 1.5 or x = −2. See [link].

0 = |4x + 1| − 7 Substitute 0 for f(x).

7 = |4x + 1| Isolate the absolute value on one side of the equation.

7 = 4x + 1 or −7 = 4x + 1 Break into two separate equations and solve.

6 = 4x −8 = 4x

x = 6
4
= 1.5    x = −8

4
= −2



Note:
Exercise:

Problem:For the function f(x) = |2x − 1| − 3,find the values of x such that f(x) = 0.

Solution:

x = −1 or x = 2

Note:
Should we always expect two answers when solving |A| = B?
No. We may find one, two, or even no answers. For example, there is no solution to 2 + |3x − 5| = 1.

Note:
Given an absolute value equation, solve it.

1. Isolate the absolute value term.
2. Use |A| = B to write A = B or A = −B.
3. Solve for x.

Example:
Exercise:



Problem:
Solving an Absolute Value Equation

Solve 1 = 4 |x − 2| + 2.

Solution:

Isolating the absolute value on one side of the equation gives the following.
Equation:

The absolute value always returns a positive value, so it is impossible for the absolute value to equal a
negative value. At this point, we notice that this equation has no solutions.

Note:
In [link], if f(x) = 1 and g(x) = 4 |x − 2| + 2were graphed on the same set of axes, would the graphs
intersect?
No. The graphs of f and g would not intersect, as shown in [link]. This confirms, graphically, that the equation
1 = 4 |x − 2| + 2 has no solution.

Note:
Exercise:

1 = 4 |x − 2| + 2

− 1 = 4 |x − 2|

− 1
4 = |x − 2|



Problem:

Find where the graph of the function f(x) = − |x + 2| + 3 intersects the horizontal and vertical axes.

Solution:

f(0) = 1, so the graph intersects the vertical axis at (0, 1). f(x) = 0when x = −5 and x = 1 so the
graph intersects the horizontal axis at (−5, 0) and (1, 0).

Solving an Absolute Value Inequality

Absolute value equations may not always involve equalities. Instead, we may need to solve an equation within
a range of values. We would use an absolute value inequality to solve such an equation. An absolute value
inequality is an equation of the form
Equation:

|A| < B, |A| ≤ B, |A| > B, or  |A| ≥ B,

where an expression A (and possibly but not usually B) depends on a variable x. Solving the inequality means
finding the set of all x that satisfy the inequality. Usually this set will be an interval or the union of two
intervals.

There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The advantage
of the graphical approach is we can read the solution by interpreting the graphs of two functions. The
advantage of the algebraic approach is it yields solutions that may be difficult to read from the graph.

For example, we know that all numbers within 200 units of 0 may be expressed as
Equation:

|x| < 200 or − 200 < x < 200 

Suppose we want to know all possible returns on an investment if we could earn some amount of money within
$200 of $600. We can solve algebraically for the set of values x  such that the distance between x and 600 is
less than 200. We represent the distance between x  and 600 as |x − 600|.
Equation:

This means our returns would be between $400 and $800.

Sometimes an absolute value inequality problem will be presented to us in terms of a shifted and/or stretched or
compressed absolute value function, where we must determine for which values of the input the function’s
output will be negative or positive.

Note:

|x − 600| < 200    or     − 200 < x − 600 < 200

   − 200 + 600 < x − 600 + 600 < 200 + 600

                      400 < x < 800



Given an absolute value inequality of the form |x − A| ≤ B for real numbers a and b where b is positive,
solve the absolute value inequality algebraically.

1. Find boundary points by solving |x − A| = B.
2. Test intervals created by the boundary points to determine where |x − A| ≤ B.
3. Write the interval or union of intervals satisfying the inequality in interval, inequality, or set-builder

notation.

Example:
Exercise:

Problem:
Solving an Absolute Value Inequality

Solve |x − 5| ≤ 4.

Solution:

With both approaches, we will need to know first where the corresponding equality is true. In this case
we first will find where |x − 5| = 4.We do this because the absolute value is a function with no breaks,
so the only way the function values can switch from being less than 4 to being greater than 4 is by
passing through where the values equal 4. Solve |x − 5| = 4.
Equation:

After determining that the absolute value is equal to 4 at x = 1 and x = 9, we know the graph can
change only from being less than 4 to greater than 4 at these values. This divides the number line up into
three intervals:
Equation:

x < 1,  1 < x < 9,  and  x > 9.

To determine when the function is less than 4, we could choose a value in each interval and see if the
output is less than or greater than 4, as shown in [link].

Interval test x f(x) < 4 or > 4?

x < 1 0 |0 − 5| = 5 Greater than

1 < x < 9 6 |6 − 5| = 1 Less than

x > 9 11 |11 − 5| = 6 Greater than

or
x − 5 = 4

x = 9

x − 5 = −4

x = 1



Because 1 ≤ x ≤ 9 is the only interval in which the output at the test value is less than 4, we can
conclude that the solution to |x − 5| ≤ 4 is 1 ≤ x ≤ 9, or [1, 9].

To use a graph, we can sketch the function f(x) = |x − 5|. To help us see where the outputs are 4, the
line g(x) = 4 could also be sketched as in [link].

We can see the following:

The output values of the absolute value are equal to 4 at x = 1 and x = 9.
The graph of f is below the graph of g on 1 < x < 9.This means the output values of f(x) are less
than the output values of g(x).
The absolute value is less than or equal to 4 between these two points, when 1 ≤ x ≤ 9. In interval
notation, this would be the interval [1, 9].

Analysis

For absolute value inequalities,
Equation:

The < or > symbol may be replaced by ≤  or  ≥.

So, for this example, we could use this alternative approach.
Equation:

Graph to find the points satisfying an absolute value
inequality.

|x − A| < C, |x − A| > C,

− C < x − A < C, x − A < −C or x − A > C.

|x − 5| ≤ 4

− 4 ≤ x − 5 ≤ 4 Rewrite by removing the absolute value bars.

−4 + 5 ≤ x − 5 + 5 ≤ 4 + 5 Isolate the x.

1 ≤ x ≤ 9



Note:
Exercise:

Problem: Solve |x + 2| ≤ 6.

Solution:

−8 ≤ x ≤ 4

Note:
Given an absolute value function, solve for the set of inputs where the output is positive (or negative).

1. Set the function equal to zero, and solve for the boundary points of the solution set.
2. Use test points or a graph to determine where the function’s output is positive or negative.

Example:
Exercise:

Problem:
Using a Graphical Approach to Solve Absolute Value Inequalities

Given the function f(x) = − 1
2
|4x − 5| + 3,  determine the x-values for which the function values are

negative.

Solution:

We are trying to determine where f(x) < 0, which is when− 1
2   4x − 5 + 3 < 0.We begin by isolating

the absolute value.
Equation:

Next we solve for the equality |4x − 5| = 6.
Equation:

Now, we can examine the graph of f to observe where the output is negative. We will observe where the
branches are below the x-axis. Notice that it is not even important exactly what the graph looks like, as
long as we know that it crosses the horizontal axis at x = − 1

4
and x = 11

4
and that the graph has been

reflected vertically. See [link]. ∣ ∣− 1
2 4x − 5 < −3 Multiply both sides by –2, and reverse the inequality.

|4x − 5| > 6∣ ∣ 4x − 5 = 6mtd 4x − 5 = −6

4x − 5 = 6 4x = −1

x = 11
4 x = − 1

4



We observe that the graph of the function is below the x-axis left of x = − 1
4 and right of x = 11

4 . This
means the function values are negative to the left of the first horizontal intercept at x = − 1

4 , and
negative to the right of the second intercept at x = 11

4 . This gives us the solution to the inequality.
Equation:

x < −
1

4
or x >

11

4

In interval notation, this would be (−∞,−0.25) ∪ (2.75,∞).

Note:
Exercise:

Problem:Solve − 2 |k − 4| ≤ −6.

Solution:

k ≤ 1 or k ≥ 7; in interval notation, this would be (−∞, 1] ∪ [7,∞)

Note:
Access these online resources for additional instruction and practice with absolute value.

Graphing Absolute Value Functions
Graphing Absolute Value Functions 2
Equations of Absolute Value Function
Equations of Absolute Value Function 2
Solving Absolute Value Equations

Key Concepts

http://openstaxcollege.org/l/graphabsvalue
http://openstaxcollege.org/l/graphabsvalue2
http://openstaxcollege.org/l/findeqabsval
http://openstaxcollege.org/l/findeqabsval2
http://openstaxcollege.org/l/solveabsvalueeq


The absolute value function is commonly used to measure distances between points. See [link].
Applied problems, such as ranges of possible values, can also be solved using the absolute value function.
See [link].
The graph of the absolute value function resembles a letter V. It has a corner point at which the graph
changes direction. See [link].
In an absolute value equation, an unknown variable is the input of an absolute value function.
If the absolute value of an expression is set equal to a positive number, expect two solutions for the
unknown variable. See [link].
An absolute value equation may have one solution, two solutions, or no solutions. See [link].
An absolute value inequality is similar to an absolute value equation but takes the form 
|A| < B, |A| ≤ B, |A| > B, or  |A| ≥ B.It can be solved by determining the boundaries of the

solution set and then testing which segments are in the set. See [link].
Absolute value inequalities can also be solved graphically. See [link].

Section Exercise

Verbal

Exercise:

Problem: How do you solve an absolute value equation?

Solution:

Isolate the absolute value term so that the equation is of the form |A| = B. Form one equation by setting
the expression inside the absolute value symbol, A, equal to the expression on the other side of the
equation, B. Form a second equation by setting A equal to the opposite of the expression on the other side
of the equation, − B. Solve each equation for the variable.

Exercise:

Problem:

How can you tell whether an absolute value function has two x-intercepts without graphing the function?

Exercise:

Problem:

When solving an absolute value function, the isolated absolute value term is equal to a negative number.
What does that tell you about the graph of the absolute value function?

Solution:

The graph of the absolute value function does not cross the x-axis, so the graph is either completely above
or completely below the x-axis.

Exercise:

Problem:

How can you use the graph of an absolute value function to determine the x-values for which the function
values are negative?

Exercise:

Problem: How do you solve an absolute value inequality algebraically?



Solution:

First determine the boundary points by finding the solution(s) of the equation. Use the boundary points to
form possible solution intervals. Choose a test value in each interval to determine which values satisfy the
inequality.

Algebraic

Exercise:

Problem:

Describe all numbers x that are at a distance of 4 from the number 8. Express this using absolute value
notation.

Exercise:

Problem:

Describe all numbers x that are at a distance of 1
2 from the number −4. Express this using absolute value

notation.

Solution:

|x + 4| = 1
2

Exercise:

Problem:

Describe the situation in which the distance that point x is from 10 is at least 15 units. Express this using
absolute value notation.

Exercise:

Problem:

Find all function values f(x) such that the distance from f(x) to the value 8 is less than 0.03 units.
Express this using absolute value notation.

Solution:

|f(x) − 8| < 0.03

For the following exercises, solve the equations below and express the answer using set notation.
Exercise:

Problem: |x + 3| = 9

Exercise:

Problem: |6 − x| = 5

Solution:

{1, 11}



Exercise:

Problem: |5x − 2| = 11

Exercise:

Problem: |4x − 2| = 11

Solution:

{ 9
4
, 13

4
}

Exercise:

Problem: 2|4 − x| = 7

Exercise:

Problem: 3|5 − x| = 5

Solution:

{ 10
3 , 20

3 }

Exercise:

Problem: 3|x + 1| − 4 = 5

Exercise:

Problem: 5 |x − 4| − 7 = 2

Solution:

{ 11
5
, 29

5
}

Exercise:

Problem: 0 = − |x − 3| + 2

Exercise:

Problem: 2 |x − 3| + 1 = 2

Solution:

{ 5
2 ,

7
2 }

Exercise:

Problem: |3x − 2| = 7

Exercise:

Problem: |3x − 2| = −7



Solution:

No solution

Exercise:

Problem: 1
2 x − 5 = 11

Exercise:

Problem: 1
3 x + 5 = 14

Solution:

{−57, 27}

Exercise:

Problem: − 1
3

x + 5 + 14 = 0

For the following exercises, find the x- and y-intercepts of the graphs of each function.
Exercise:

Problem: f(x) = 2 |x + 1| − 10

Solution:

(0,−8); (−6, 0), (4, 0)

Exercise:

Problem: f(x) = 4 |x − 3| + 4

Exercise:

Problem: f(x) = −3 |x − 2| − 1

Solution:

(0,−7); no x-intercepts

Exercise:

Problem: f(x) = −2 |x + 1| + 6

For the following exercises, solve each inequality and write the solution in interval notation.
Exercise:

Problem: |x − 2| > 10

Solution:

(−∞,−8) ∪ (12,∞)

Exercise:

∣ ∣∣ ∣∣ ∣



Problem: 2 |v − 7| − 4 ≥ 42

Exercise:

Problem: |3x − 4| ≤ 8

Solution:

−4
3 ≤ x ≤ 4

Exercise:

Problem: |x − 4| ≥ 8

Exercise:

Problem: |3x − 5| ≥ 13

Solution:

(−∞,− 8
3 ] ∪ [6,∞)

Exercise:

Problem: |3x − 5| ≥ −13

Exercise:

Problem: 3
4 x − 5 ≥ 7

Solution:

(−∞,− 8
3 ] ∪ [16,∞)

Exercise:

Problem: 3
4 x − 5 + 1 ≤ 16

Graphical

For the following exercises, graph the absolute value function. Plot at least five points by hand for each graph.
Exercise:

Problem: y = |x − 1|

Solution: ∣ ∣∣ ∣



Exercise:

Problem: y = |x + 1|

Exercise:

Problem: y = |x| + 1

Solution:

For the following exercises, graph the given functions by hand.
Exercise:

Problem: y = |x| − 2

Exercise:

Problem: y = − |x|

Solution:

Exercise:



Problem: y = − |x| − 2

Exercise:

Problem: y = − |x − 3| − 2

Solution:

Exercise:

Problem: f(x) = −|x − 1| − 2

Exercise:

Problem: f(x) = −|x + 3| + 4

Solution:

Exercise:

Problem: f(x) = 2|x + 3| + 1

Exercise:

Problem: f(x) = 3 |x − 2| + 3



Solution:

Exercise:

Problem: f(x) = |2x − 4| − 3

Exercise:

Problem: f (x) = |3x + 9| + 2

Solution:

Exercise:

Problem: f(x) = − |x − 1| − 3

Exercise:

Problem: f(x) = − |x + 4| − 3

Solution:



Exercise:

Problem: f(x) = 1
2 |x + 4| − 3

Technology

Exercise:

Problem:

Use a graphing utility to graph f(x) = 10|x − 2| on the viewing window [0, 4]. Identify the
corresponding range. Show the graph.

Solution:

range: [0, 20]

Exercise:

Problem:

Use a graphing utility to graph f(x) = −100|x| + 100 on the viewing window [−5, 5]. Identify the
corresponding range. Show the graph.



For the following exercises, graph each function using a graphing utility. Specify the viewing window.
Exercise:

Problem:f(x) = −0.1 |0.1(0.2 − x)| + 0.3

Solution:

x-intercepts:

Exercise:

Problem: f(x) = 4 × 109 x − (5 × 109) + 2 × 109

Extensions

For the following exercises, solve the inequality.
Exercise:

Problem: −2x − 2
3 (x + 1) + 3 > −1

Solution:

(−∞,∞)

Exercise:

Problem:If possible, find all values of a such that there are no x-intercepts for f(x) = 2 |x + 1| + a.

Exercise:

Problem: If possible, find all values of a such that there are no y-intercepts for f(x) = 2 |x + 1| + a.

Solution:

There is no solution for a that will keep the function from having a y-intercept. The absolute value
function always crosses the y-intercept when x = 0.

Real-World Applications

Exercise: ∣ ∣∣ ∣



Problem:

Cities A and B are on the same east-west line. Assume that city A is located at the origin. If the distance
from city A to city B is at least 100 miles and x represents the distance from city B to city A, express this
using absolute value notation.

Exercise:

Problem:

The true proportion p of people who give a favorable rating to Congress is 8% with a margin of error of
1.5%. Describe this statement using an absolute value equation.

Solution:

|p − 0.08| ≤ 0.015

Exercise:

Problem:

Students who score within 18 points of the number 82 will pass a particular test. Write this statement
using absolute value notation and use the variable x for the score.

Exercise:

Problem:

A machinist must produce a bearing that is within 0.01 inches of the correct diameter of 5.0 inches. Using
x as the diameter of the bearing, write this statement using absolute value notation.

Solution:

|x − 5.0| ≤ 0.01

Exercise:

Problem:

The tolerance for a ball bearing is 0.01. If the true diameter of the bearing is to be 2.0 inches and the
measured value of the diameter is x inches, express the tolerance using absolute value notation.

Glossary

absolute value equation
an equation of the form |A| = B, with B ≥ 0; it will have solutions when A = B or A = −B

absolute value inequality
a relationship in the form|A| < B, |A| ≤ B, |A| > B, or  |A| ≥ B



Inverse Functions
In this section, you will:

Verify inverse functions.
Determine the domain and range of an inverse function, and restrict the domain of
a function to make it one-to-one.
Find or evaluate the inverse of a function.
Use the graph of a one-to-one function to graph its inverse function on the same
axes.

A reversible heat pump is a climate-control system that is an air conditioner and a
heater in a single device. Operated in one direction, it pumps heat out of a house to
provide cooling. Operating in reverse, it pumps heat into the building from the outside,
even in cool weather, to provide heating. As a heater, a heat pump is several times
more efficient than conventional electrical resistance heating.

If some physical machines can run in two directions, we might ask whether some of
the function “machines” we have been studying can also run backwards. [link]
provides a visual representation of this question. In this section, we will consider the
reverse nature of functions.

Verifying That Two Functions Are Inverse Functions

Suppose a fashion designer traveling to Milan for a fashion show wants to know what
the temperature will be. He is not familiar with the Celsius scale. To get an idea of

Can a function “machine” operate in reverse?



how temperature measurements are related, he asks his assistant, Betty, to convert 75
degrees Fahrenheit to degrees Celsius. She finds the formula
Equation:

C =
5

9
(F − 32)

and substitutes 75 forF to calculate
Equation:

5

9
(75 − 32) ≈ 24°C.

Knowing that a comfortable 75 degrees Fahrenheit is about 24 degrees Celsius, he
sends his assistant the week’s weather forecast from [link] for Milan, and asks her to
convert all of the temperatures to degrees Fahrenheit.

At first, Betty considers using the formula she has already found to complete the
conversions. After all, she knows her algebra, and can easily solve the equation forF
after substituting a value forC. For example, to convert 26 degrees Celsius, she could
write
Equation:

26 = 5
9 (F − 32)

26 ⋅ 9
5 = F − 32

F = 26 ⋅ 9
5 + 32 ≈ 79



After considering this option for a moment, however, she realizes that solving the
equation for each of the temperatures will be awfully tedious. She realizes that since
evaluation is easier than solving, it would be much more convenient to have a different
formula, one that takes the Celsius temperature and outputs the Fahrenheit
temperature.

The formula for which Betty is searching corresponds to the idea of an inverse
function, which is a function for which the input of the original function becomes the
output of the inverse function and the output of the original function becomes the input
of the inverse function.

Given a function f(x), we represent its inverse as f−1(x), read as ‵‵f inverse ofx. ”
The raised−1 is part of the notation. It is not an exponent; it does not imply a power
of−1 . In other words, f−1(x) does not mean 1

f(x) because 1
f(x) is the reciprocal of f

and not the inverse.

The “exponent-like” notation comes from an analogy between function composition
and multiplication: just as a−1a = 1 (1 is the identity element for multiplication) for
any nonzero number a, so f−1 ∘ f equals the identity function, that is,
Equation:

(f−1 ∘ f)(x) = f−1 (f(x)) = f−1 (y) = x

This holds for allx in the domain of f. Informally, this means that inverse functions
“undo” each other. However, just as zero does not have a reciprocal, some functions do
not have inverses.

Given a function f(x), we can verify whether some other function g(x) is the inverse
of f(x) by checking whether either g(f(x)) = x or f(g(x)) = x is true. We can test
whichever equation is more convenient to work with because they are logically
equivalent (that is, if one is true, then so is the other.)

For example, y = 4x and y = 1
4 x are inverse functions.

Equation:

(f−1 ∘ f)(x) = f−1 (4x) =
1

4
(4x) = x

and
Equation:

( ) ( )



(f ∘ f−1)(x) = f (
1

4
x) = 4(

1

4
x) = x

A few coordinate pairs from the graph of the function y = 4x are (−2, −8), (0, 0), and
(2, 8). A few coordinate pairs from the graph of the function y = 1

4 x are (−8, −2), (0,
0), and (8, 2). If we interchange the input and output of each coordinate pair of a
function, the interchanged coordinate pairs would appear on the graph of the inverse
function.

Note:
Inverse Function
For any one-to-one function f(x) = y, a function f−1 (x) is an inverse function of f
if f−1(y) = x. This can also be written as f−1(f(x)) = x for allx in the domain of
f. It also follows that f(f−1(x)) = x for allx in the domain of f−1 if f−1 is the
inverse of f.
The notation f−1 is read “f inverse.” Like any other function, we can use any
variable name as the input for f−1, so we will often write f−1(x), which we read as 
‵‵f inverse of x.′′ Keep in mind that
Equation:

f−1(x) ≠
1

f(x)

and not all functions have inverses.

Example:
Exercise:

Problem:
Identifying an Inverse Function for a Given Input-Output Pair

If for a particular one-to-one function f(2) = 4 and f(5) = 12, what are the
corresponding input and output values for the inverse function?

Solution:

The inverse function reverses the input and output quantities, so if
Equation:



Alternatively, if we want to name the inverse function g, then g(4) = 2 and
g(12) = 5.

Analysis

Notice that if we show the coordinate pairs in a table form, the input and output are
clearly reversed. See [link].

(x, f(x)) (x, g(x))

(2, 4) (4, 2)

(5, 12) (12, 5)

Note:
Exercise:

Problem:

Given thath−1(6) = 2, what are the corresponding input and output values of
the original functionh?

Solution:

h(2) = 6

Note:
Given two functions f(x) and g(x), test whether the functions are inverses of
each other.

f(2) = 4,  then f−1(4) = 2;

f (5) = 12,  then f−1 (12) = 5.



1. Determine whether f(g(x)) = x or g(f(x)) = x.
2. If both statements are true, then g = f−1 and f = g−1. If either statement is

false, then both are false, and g ≠ f−1 and f ≠ g−1.

Example:
Exercise:

Problem:
Testing Inverse Relationships Algebraically

If f (x) = 1
x+2 and g (x) = 1

x
− 2, is g = f−1?

Solution:
Equation:

so
Equation:

g = f−1 and f = g−1

This is enough to answer yes to the question, but we can also verify the other
formula.
Equation:

Analysis

= x+ 2 − 2

= x

g(f(x)) = 1
( 1
x+2 )

− 2

= 1
1
x

= x

f(g(x)) = 1
1
x
−2+2



Notice the inverse operations are in reverse order of the operations from the original
function.

Note:
Exercise:

Problem:If f (x) = x3 − 4 and g (x) = 3√x+ 4, is g = f−1?

Solution:

Yes

Example:
Exercise:

Problem:
Determining Inverse Relationships for Power Functions

If f(x) = x3 (the cube function) and g(x) = 1
3 x, is g = f−1?

Solution:
Equation:

f (g (x)) =
x3

27
≠ x

No, the functions are not inverses.

Analysis

The correct inverse to the cube is, of course, the cube root 3√x = x
1
3 , that is, the one-

third is an exponent, not a multiplier.

Note:
Exercise:



Problem:If f (x) = (x− 1)3 and g (x) = 3√x+ 1, is g = f−1?

Solution:

Yes

Finding Domain and Range of Inverse Functions

The outputs of the function f are the inputs to f−1, so the range of f is also the domain
of f−1. Likewise, because the inputs to f are the outputs of f−1, the domain of f is the
range of f−1. We can visualize the situation as in [link].

When a function has no inverse function, it is possible to create a new function where
that new function on a limited domain does have an inverse function. For example, the
inverse of f(x) = √x is f−1(x) = x2, because a square “undoes” a square root; but
the square is only the inverse of the square root on the domain [0,∞), since that is the
range of f(x) = √x.

We can look at this problem from the other side, starting with the square (toolkit
quadratic) function f(x) = x2. If we want to construct an inverse to this function, we
run into a problem, because for every given output of the quadratic function, there are
two corresponding inputs (except when the input is 0). For example, the output 9 from
the quadratic function corresponds to the inputs 3 and –3. But an output from a
function is an input to its inverse; if this inverse input corresponds to more than one
inverse output (input of the original function), then the “inverse” is not a function at
all! To put it differently, the quadratic function is not a one-to-one function; it fails the

Domain and range of a function and its inverse



horizontal line test, so it does not have an inverse function. In order for a function to
have an inverse, it must be a one-to-one function.

In many cases, if a function is not one-to-one, we can still restrict the function to a part
of its domain on which it is one-to-one. For example, we can make a restricted version
of the square function f(x) = x2 with its domain limited to [0,∞), which is a one-to-
one function (it passes the horizontal line test) and which has an inverse (the square-
root function).

If f(x) = (x− 1)2 on [1,∞), then the inverse function is f−1(x) = √x+ 1.

The domain of f = range of f−1 = [1,∞).
The domain of f−1 = range of f = [0,∞).

Note:
Is it possible for a function to have more than one inverse?
No. If two supposedly different functions, say, g andh, both meet the definition of
being inverses of another function f, then you can prove that g = h. We have just
seen that some functions only have inverses if we restrict the domain of the original
function. In these cases, there may be more than one way to restrict the domain,
leading to different inverses. However, on any one domain, the original function still
has only one unique inverse.

Note:
Domain and Range of Inverse Functions
The range of a function f(x) is the domain of the inverse function f−1(x).
The domain of f(x) is the range of f−1(x).

Note:
Given a function, find the domain and range of its inverse.

1. If the function is one-to-one, write the range of the original function as the
domain of the inverse, and write the domain of the original function as the range
of the inverse.

2. If the domain of the original function needs to be restricted to make it one-to-
one, then this restricted domain becomes the range of the inverse function.



Example:
Exercise:

Problem:
Finding the Inverses of Toolkit Functions

Identify which of the toolkit functions besides the quadratic function are not one-
to-one, and find a restricted domain on which each function is one-to-one, if any.
The toolkit functions are reviewed in [link]. We restrict the domain in such a
fashion that the function assumes all y-values exactly once.

Constant Identity Quadratic Cubic Reciprocal

f(x) = c f(x) = x f(x) = x2 f(x) = x3 f(x) = 1
x

Reciprocal
squared Cube root Square root Absolute

value

f(x) = 1
x2 f(x) = 3√x f(x) = √x f(x) = |x|

Solution:

The constant function is not one-to-one, and there is no domain (except a single
point) on which it could be one-to-one, so the constant function has no
meaningful inverse.

The absolute value function can be restricted to the domain [0,∞),where it is
equal to the identity function.

The reciprocal-squared function can be restricted to the domain (0,∞).

Analysis

We can see that these functions (if unrestricted) are not one-to-one by looking at their
graphs, shown in [link]. They both would fail the horizontal line test. However, if a
function is restricted to a certain domain so that it passes the horizontal line test, then
in that restricted domain, it can have an inverse.



Note:
Exercise:

Problem: 

The domain of function f is (1,∞) and the range of function f is (−∞,−2).
Find the domain and range of the inverse function.

Solution:

The domain of function f−1 is (−∞, − 2) and the range of function f−1 is
(1,∞).

Finding and Evaluating Inverse Functions

Once we have a one-to-one function, we can evaluate its inverse at specific inverse
function inputs or construct a complete representation of the inverse function in many
cases.

Inverting Tabular Functions

(a) Absolute value (b) Reciprocal squared



Suppose we want to find the inverse of a function represented in table form.
Remember that the domain of a function is the range of the inverse and the range of
the function is the domain of the inverse. So we need to interchange the domain and
range.

Each row (or column) of inputs becomes the row (or column) of outputs for the
inverse function. Similarly, each row (or column) of outputs becomes the row (or
column) of inputs for the inverse function.

Example:
Exercise:

Problem:
Interpreting the Inverse of a Tabular Function

A function f(t) is given in [link], showing distance in miles that a car has
traveled in tminutes. Find and interpret f−1(70).

t (minutes) 30 50 70 90

f (t) (miles) 20 40 60 70

Solution:

The inverse function takes an output of f and returns an input for f. So in the
expression f−1(70), 70 is an output value of the original function, representing
70 miles. The inverse will return the corresponding input of the original function
f, 90 minutes, so f−1(70) = 90.The interpretation of this is that, to drive 70
miles, it took 90 minutes.

Alternatively, recall that the definition of the inverse was that if f(a) = b, then
f−1(b) = a. By this definition, if we are given f−1(70) = a, then we are
looking for a value a so that f(a) = 70. In this case, we are looking for a t so that
f(t) = 70, which is when t = 90.



Note:
Exercise:

Problem:Using [link], find and interpret (a) f(60),and (b) f−1(60).

t (minutes) 30 50 60 70 90

f (t) (miles) 20 40 50 60 70

Solution:

a. f(60) = 50. In 60 minutes, 50 miles are traveled.
b. f−1(60) = 70.To travel 60 miles, it will take 70 minutes.

Evaluating the Inverse of a Function, Given a Graph of the Original Function

We saw in Functions and Function Notation that the domain of a function can be read
by observing the horizontal extent of its graph. We find the domain of the inverse
function by observing the vertical extent of the graph of the original function, because
this corresponds to the horizontal extent of the inverse function. Similarly, we find the
range of the inverse function by observing the horizontal extent of the graph of the
original function, as this is the vertical extent of the inverse function. If we want to
evaluate an inverse function, we find its input within its domain, which is all or part of
the vertical axis of the original function’s graph.

Note:
Given the graph of a function, evaluate its inverse at specific points.

1. Find the desired input on the y-axis of the given graph.
2. Read the inverse function’s output from the x-axis of the given graph.



Example:
Exercise:

Problem:
Evaluating a Function and Its Inverse from a Graph at Specific Points

A function g(x) is given in [link]. Find g(3) and g−1(3).

Solution:

To evaluate g(3), we find 3 on the x-axis and find the corresponding output
value on the y-axis. The point (3, 1) tells us that g(3) = 1.

To evaluate g−1(3), recall that by definition g−1(3)means the value of x for
which g(x) = 3.By looking for the output value 3 on the vertical axis, we find
the point (5, 3) on the graph, which means g(5) = 3, so by definition,
g−1(3) = 5. See [link].



Note:
Exercise:

Problem:Using the graph in [link], (a) find g−1(1),and (b) estimate g−1(4).

Solution:

a. 3; b. 5.6

Finding Inverses of Functions Represented by Formulas

Sometimes we will need to know an inverse function for all elements of its domain,
not just a few. If the original function is given as a formula— for example, y as a
function ofx—we can often find the inverse function by solving to obtainx as a
function of y.

Note:
Given a function represented by a formula, find the inverse.

1. Make sure f is a one-to-one function.
2. Solve forx.
3. Interchangex and y.

Example:
Exercise:

Problem:
Inverting the Fahrenheit-to-Celsius Function

Find a formula for the inverse function that gives Fahrenheit temperature as a
function of Celsius temperature.
Equation:

C =
5

9
(F − 32)



Solution:
Equation:

By solving in general, we have uncovered the inverse function. If
Equation:

C = h(F) =
5

9
(F − 32),

then
Equation:

F = h−1(C) =
9

5
C + 32.

In this case, we introduced a functionh to represent the conversion because the
input and output variables are descriptive, and writingC−1 could get confusing.

Note:
Exercise:

Problem:Solve forx in terms of y given y = 1
3 (x− 5)

Solution:

x = 3y+ 5

Example:
Exercise:

C = 5
9
(F − 32)

C ⋅ 9
5
= F − 32

F = 9
5
C + 32



Problem:
Solving to Find an Inverse Function

Find the inverse of the function f (x) = 2
x−3 + 4.

Solution:
Equation:

So f−1 (y) = 2
y−4 + 3 or f−1 (x) = 2

x−4 + 3.

Analysis

The domain and range of f exclude the values 3 and 4, respectively. f  and f−1 are
equal at two points but are not the same function, as we can see by creating [link].

x 1 2 5 f−1(y)

f(x) 3 2 5 y

Example:
Exercise:

Problem:
Solving to Find an Inverse with Radicals

Find the inverse of the function f(x) = 2 +√x− 4.

y = 2
x−3 + 4 Set up an equation.

y− 4 = 2
x−3 Subtract 4 from both sides.

x− 3 = 2
y−4 Multiply both sides by x− 3 and divide by y− 4.

x = 2
y−4 + 3 Add 3 to both sides.



Solution:
Equation:

So f−1 (x) = (x− 2)2 + 4.

The domain of f is [4,∞). Notice that the range of f is [2,∞), so this means
that the domain of the inverse function f−1 is also [2,∞).

Analysis

The formula we found for f−1 (x) looks like it would be valid for all realx. However,
f−1 itself must have an inverse (namely, f ) so we have to restrict the domain of f−1

to [2,∞) in order to make f−1 a one-to-one function. This domain of f−1 is exactly
the range of f.

Note:
Exercise:

Problem:

What is the inverse of the function f(x) = 2 −√x?State the domains of both
the function and the inverse function.

Solution:

f−1(x) = (2 − x)2; domain of f : [0,∞); domain of f−1 : (−∞, 2]

Finding Inverse Functions and Their Graphs

Now that we can find the inverse of a function, we will explore the graphs of functions
and their inverses. Let us return to the quadratic function f(x) = x2 restricted to the
domain [0,∞), on which this function is one-to-one, and graph it as in [link].

y = 2 +√x− 4

(y− 2)2 = x− 4

x = (y− 2)2 + 4



Restricting the domain to [0,∞)makes the function one-to-one (it will obviously pass
the horizontal line test), so it has an inverse on this restricted domain.

We already know that the inverse of the toolkit quadratic function is the square root
function, that is, f−1(x) = √x. What happens if we graph both f  and f−1 on the
same set of axes, using the x-axis for the input to both f and  f−1?

We notice a distinct relationship: The graph of f−1(x) is the graph of f(x) reflected
about the diagonal line y = x, which we will call the identity line, shown in [link].

Quadratic function with domain restricted to [0, ∞).

Square and square-root functions on the non-negative
domain



This relationship will be observed for all one-to-one functions, because it is a result of
the function and its inverse swapping inputs and outputs. This is equivalent to
interchanging the roles of the vertical and horizontal axes.

Example:
Exercise:

Problem:
Finding the Inverse of a Function Using Reflection about the Identity Line

Given the graph of f(x) in [link], sketch a graph of f−1(x).

Solution:

This is a one-to-one function, so we will be able to sketch an inverse. Note that
the graph shown has an apparent domain of (0,∞) and range of (−∞,∞), so
the inverse will have a domain of (−∞,∞) and range of (0,∞).

If we reflect this graph over the line y = x, the point (1, 0) reflects to (0, 1) and
the point (4, 2) reflects to (2, 4). Sketching the inverse on the same axes as the
original graph gives [link].



Note:
Exercise:

Problem:Draw graphs of the functions f and f−1from [link].

Solution:

The function and its inverse, showing reflection about
the identity line



Note:
Is there any function that is equal to its own inverse?
Yes. If f = f−1, then f (f (x)) = x, and we can think of several functions that have
this property. The identity function does, and so does the reciprocal function, because
Equation:

1
1
x

= x

Any function f (x) = c− x, where c is a constant, is also equal to its own inverse.

Note:
Access these online resources for additional instruction and practice with inverse
functions.

Inverse Functions
Inverse Function Values Using Graph
Restricting the Domain and Finding the Inverse

http://openstaxcollege.org/l/inversefunction
http://openstaxcollege.org/l/inversfuncgraph
http://openstaxcollege.org/l/restrictdomain


Visit this website for additional practice questions from Learningpod.

Key Concepts

If g(x) is the inverse of f(x), then g(f(x)) = f(g(x)) = x. See [link], [link],
and [link].
Each of the toolkit functions has an inverse. See [link].
For a function to have an inverse, it must be one-to-one (pass the horizontal line
test).
A function that is not one-to-one over its entire domain may be one-to-one on part
of its domain.
For a tabular function, exchange the input and output rows to obtain the inverse.
See [link].
The inverse of a function can be determined at specific points on its graph. See
[link].
To find the inverse of a formula, solve the equation y = f(x) forx as a function
of y. Then exchange the labelsx and y. See [link], [link], and [link].
The graph of an inverse function is the reflection of the graph of the original
function across the line y = x. See [link].

Section Exercises

Verbal

Exercise:

Problem: 

Describe why the horizontal line test is an effective way to determine whether a
function is one-to-one?

Solution:

Each output of a function must have exactly one output for the function to be one-
to-one. If any horizontal line crosses the graph of a function more than once, that
means that y-values repeat and the function is not one-to-one. If no horizontal line
crosses the graph of the function more than once, then no y-values repeat and the
function is one-to-one.

Exercise:

http://openstaxcollege.org/l/PreCalcLPC01


Problem: 

Why do we restrict the domain of the function f(x) = x2 to find the function’s
inverse?

Exercise:

Problem: Can a function be its own inverse? Explain.

Solution:

Yes. For example, f(x) = 1
x

is its own inverse.

Exercise:

Problem: 

Are one-to-one functions either always increasing or always decreasing? Why or
why not?

Exercise:

Problem: How do you find the inverse of a function algebraically?

Solution:

Given a function y = f(x), solve forx in terms of y. Interchange thex and y.
Solve the new equation for y. The expression for y is the inverse, y = f−1(x).

Algebraic

Exercise:

Problem: 

Show that the function f(x) = a− x is its own inverse for all real numbers a.

For the following exercises, find f−1(x) for each function.
Exercise:

Problem: f(x) = x+ 3



Solution:

f−1(x) = x− 3

Exercise:

Problem: f(x) = x+ 5

Exercise:

Problem: f(x) = 2 − x

Solution:

f−1(x) = 2 − x

Exercise:

Problem: f(x) = 3 − x

Exercise:

Problem: f(x) = x
x+2

Solution:

f−1(x) = −2x
x−1

Exercise:

Problem: f(x) = 2x+3
5x+4

For the following exercises, find a domain on which each function f is one-to-one and
non-decreasing. Write the domain in interval notation. Then find the inverse of f
restricted to that domain.
Exercise:

Problem: f(x) = (x+ 7)2

Solution:

domain off(x) : [−7,∞); f−1(x) = √x− 7



Exercise:

Problem: f(x) = (x− 6)2

Exercise:

Problem: f(x) = x2 − 5

Solution:

domain of f(x) : [0,∞); f−1(x) = √x+ 5

Exercise:

Problem: Given f (x) = x
2+x

and g(x) = 2x
1−x

:

a. Find f(g(x)) and g(f(x)).
b. What does the answer tell us about the relationship between f(x) and g(x)?

Solution:

a.  f(g(x)) = x and g(f(x)) = x. b. This tells us that f and g are inverse
functions

For the following exercises, use function composition to verify that f(x) and g(x) are
inverse functions.
Exercise:

Problem: f(x) = 3√x− 1 and g(x) = x3 + 1

Solution:

 f(g(x)) = x, g(f(x)) = x

Exercise:

Problem: f(x) = −3x+ 5 and g(x) = x−5
−3



Graphical

For the following exercises, use a graphing utility to determine whether each function
is one-to-one.
Exercise:

Problem: f(x) = √x

Solution:

one-to-one

Exercise:

Problem: f(x) = 3√3x+ 1

Exercise:

Problem: f(x) = −5x+ 1

Solution:

one-to-one

Exercise:

Problem: f(x) = x3 − 27

For the following exercises, determine whether the graph represents a one-to-one
function.
Exercise:

Problem:



Solution:

not one-to-one

Exercise:

Problem:

For the following exercises, use the graph of f shown in [link].



Exercise:

Problem: Find f (0).

Solution:

3

Exercise:

Problem: Solve f(x) = 0.

Exercise:

Problem: Find f−1 (0).

Solution:

2

Exercise:

Problem: Solve f−1 (x) = 0.

For the following exercises, use the graph of the one-to-one function shown in [link].



Exercise:

Problem: Sketch the graph of f−1.

Solution:

Exercise:

Problem: Find f(6) and f−1(2).

Exercise:

Problem: If the complete graph of f is shown, find the domain of f.

Solution:

[2, 10]

Exercise:



Problem: If the complete graph of f is shown, find the range of f.

Numeric

For the following exercises, evaluate or solve, assuming that the function f is one-to-
one.
Exercise:

Problem: If f(6) = 7, find f−1(7).

Solution:

6

Exercise:

Problem: If f(3) = 2, find f−1(2).

Exercise:

Problem: If f−1 (−4) = −8, find f(−8).

Solution:

−4

Exercise:

Problem: If f−1 (−2) = −1, find f(−1).

For the following exercises, use the values listed in [link] to evaluate or solve.

x f(x)



0 8

1 0

2 7

3 4

4 2

5 6

6 5

7 3

8 9

9 1

Exercise:

Problem: Find f (1).

Solution:

0

Exercise:

Problem: Solve f(x) = 3.

Exercise:

Problem: Find f−1 (0).

Solution:

1

Exercise:



Problem: Solve f−1 (x) = 7.

Exercise:

Problem: 

Use the tabular representation of f in [link] to create a table for f−1 (x).

x 3 6 9 13 14

f(x) 1 4 7 12 16

Solution:

x 1 4 7 12 16

f−1(x) 3 6 9 13 14

Technology

For the following exercises, find the inverse function. Then, graph the function and its
inverse.
Exercise:

Problem: f(x) = 3
x−2

Exercise:



Problem: f(x) = x3 − 1

Solution:

f−1(x) = (1 + x)1/3

Exercise:

Problem: 

Find the inverse function of f(x) = 1
x−1 . Use a graphing utility to find its

domain and range. Write the domain and range in interval notation.

Real-World Applications

Exercise:

Problem:

To convert fromx degrees Celsius to y degrees Fahrenheit, we use the formula
f(x) = 9

5 x+ 32. Find the inverse function, if it exists, and explain its meaning.



Solution:

f−1(x) = 5
9 (x− 32). Given the Fahrenheit temperature,x, this formula allows

you to calculate the Celsius temperature.

Exercise:

Problem: 

The circumferenceC of a circle is a function of its radius given byC(r) = 2πr.
Express the radius of a circle as a function of its circumference. Call this function
r(C). Find r(36π) and interpret its meaning.

Exercise:

Problem:

A car travels at a constant speed of 50 miles per hour. The distance the car travels
in miles is a function of time, t, in hours given by d(t) = 50t. Find the inverse
function by expressing the time of travel in terms of the distance traveled. Call
this function t(d). Find t(180) and interpret its meaning.

Solution:

t(d) = d
50 , t(180) =

180
50 . The time for the car to travel 180 miles is 3.6 hours.

Chapter Review Exercises

Functions and Function Notation

For the following exercises, determine whether the relation is a function.
Exercise:

Problem: {(a, b), (c, d), (e, d)}

Solution:

function

Exercise:

Problem: {(5, 2), (6, 1), (6, 2), (4, 8)}



Exercise:

Problem: 

y2 + 4 = x, forx the independent variable and y the dependent variable

Solution:

not a function

Exercise:

Problem: Is the graph in [link] a function?

For the following exercises, evaluate the function at the indicated values:
f(−3); f(2); f(−a); − f(a); f(a+ h).

Exercise:

Problem: f(x) = −2x2 + 3x

Solution:

f(−3) = −27;f(2) = −2;f(−a) = −2a2 − 3a; 
−f(a) = 2a2 − 3a;f(a+ h) = −2a2 + 3a− 4ah+ 3h− 2h2

Exercise:

Problem: f(x) = 2 |3x− 1|

For the following exercises, determine whether the functions are one-to-one.



Exercise:

Problem: f(x) = −3x+ 5

Solution:

one-to-one

Exercise:

Problem: f(x) = |x− 3|

For the following exercises, use the vertical line test to determine if the relation whose
graph is provided is a function.
Exercise:

Problem:

Solution:

function

Exercise:

Problem:



Exercise:

Problem:

Solution:

function



For the following exercises, graph the functions.
Exercise:

Problem: f(x) = |x+ 1|

Exercise:

Problem: f(x) = x2 − 2

Solution:

For the following exercises, use [link] to approximate the values.

Exercise:

Problem: f(2)



Exercise:

Problem: f(−2)

Solution:

2

Exercise:

Problem: If f(x) = −2, then solve forx.

Exercise:

Problem: If f(x) = 1, then solve forx.

Solution:

x = −1.8 or or x = 1.8

For the following exercises, use the functionh(t) = −16t2 + 80t to find the values.
Exercise:

Problem: h(2)−h(1)
2−1

Exercise:

Problem: h(a)−h(1)
a−1

Solution:

−64+80a−16a2

−1+a
= −16a+ 64

Domain and Range

For the following exercises, find the domain of each function, expressing answers
using interval notation.
Exercise:



Problem: f(x) = 2
3x+2

Exercise:

Problem: f(x) = x−3
x2−4x−12

Solution:

(−∞,−2) ∪ (−2, 6) ∪ (6,∞)

Exercise:

Problem: f(x) = √x−6
√x−4

Exercise:

Problem: Graph this piecewise function:f(x) = {

Solution:

Rates of Change and Behavior of Graphs

For the following exercises, find the average rate of change of the functions from
x = 1 to x = 2.
Exercise:

x+ 1        x < −2

−2x− 3   x ≥ −2



Problem: f(x) = 4x− 3

Exercise:

Problem: f(x) = 10x2 + x

Solution:

31

Exercise:

Problem: f(x) = − 2
x2

For the following exercises, use the graphs to determine the intervals on which the
functions are increasing, decreasing, or constant.
Exercise:

Problem:

Solution:

increasing (2,∞);  decreasing (−∞, 2)



Exercise:

Problem:

Exercise:

Problem:



Solution:

increasing(−3, 1); constant (−∞,−3) ∪ (1,∞)

Exercise:

Problem: Find the local minimum of the function graphed in [link].

Exercise:

Problem: Find the local extrema for the function graphed in [link].

Solution:

local minimum (−2,−3); local maximum (1, 3)

Exercise:

Problem: 

For the graph in [link], the domain of the function is [−3, 3].The range is
[−10, 10]. Find the absolute minimum of the function on this interval.

Exercise:

Problem: Find the absolute maximum of the function graphed in [link].



Solution:

(−1.8, 10)



Composition of Functions

For the following exercises, find (f ∘ g)(x) and (g ∘ f)(x) for each pair of functions.
Exercise:

Problem: f(x) = 4 − x, g(x) = −4x

Exercise:

Problem: f(x) = 3x+ 2, g(x) = 5 − 6x

Solution:

(f ∘ g)(x) = 17 − 18x; (g ∘ f)(x) = −7 − 18x

Exercise:

Problem: f(x) = x2 + 2x, g(x) = 5x+ 1

Exercise:

Problem: f(x) = √x+ 2,  g(x) = 1
x

Solution:

(f ∘ g)(x) = √ 1
x
+ 2; (g ∘ f)(x) = 1

√x+2

Exercise:

Problem: f(x) = x+3
2 ,  g(x) = √1 − x

For the following exercises, find (f ∘ g) and the domain for (f ∘ g)(x) for each pair
of functions.
Exercise:

Problem: f(x) = x+1
x+4 ,  g(x) =

1
x

Solution:

(f ∘ g)(x) = 1+x
1+4x ,  x ≠ 0,  x ≠ − 1

4



Exercise:

Problem: f(x) = 1
x+3 ,  g(x) =

1
x−9

Exercise:

Problem: f(x) = 1
x
,  g(x) = √x

Solution:

(f ∘ g)(x) = 1
√x

, x > 0

Exercise:

Problem: f(x) = 1
x2−1

,  g(x) = √x+ 1

For the following exercises, express each functionH as a composition of two functions
f and gwhereH(x) = (f ∘ g)(x).
Exercise:

Problem: H(x) = √ 2x−1
3x+4

Solution:

sample: g(x) = 2x−1
3x+4 ; f(x) = √x

Exercise:

Problem: H(x) = 1

(3x2−4)
−3

Transformation of Functions

For the following exercises, sketch a graph of the given function.
Exercise:

Problem: f(x) = (x− 3)2



Solution:

Exercise:

Problem: f(x) = (x+ 4)3

Exercise:

Problem: f(x) = √x+ 5

Solution:



Exercise:

Problem: f(x) = −x3

Exercise:

Problem: f(x) = 3√−x

Solution:

Exercise:

Problem: f(x) = 5√−x− 4

Exercise:

Problem: f(x) = 4 [|x− 2| − 6]

Solution:



Exercise:

Problem: f(x) = −(x+ 2)2 − 1

For the following exercises, sketch the graph of the function g if the graph of the
function f is shown in [link].

Exercise:

Problem: g(x) = f(x− 1)



Solution:

Exercise:

Problem: g(x) = 3f(x)

For the following exercises, write the equation for the standard function represented by
each of the graphs below.
Exercise:

Problem:

Solution:

f(x) = |x− 3|



Exercise:

Problem:

For the following exercises, determine whether each function below is even, odd, or
neither.
Exercise:

Problem: f(x) = 3x4

Solution:

even

Exercise:

Problem: g(x) = √x

Exercise:

Problem: h(x) = 1
x
+ 3x

Solution:

odd

For the following exercises, analyze the graph and determine whether the graphed
function is even, odd, or neither.
Exercise:



Problem:

Exercise:

Problem:

Solution:

even

Exercise:

Problem:



Absolute Value Functions

For the following exercises, write an equation for the transformation of f(x) = |x|.
Exercise:

Problem:

Solution:

f(x) = 1
2
|x+ 2| + 1

Exercise:



Problem:

Exercise:

Problem:

Solution:

f(x) = −3 |x− 3| + 3

For the following exercises, graph the absolute value function.
Exercise:

Problem: f(x) = |x− 5|

Exercise:

Problem: f(x) = − |x− 3|

Solution:



Exercise:

Problem: f(x) = |2x− 4|

For the following exercises, solve the absolute value equation.
Exercise:

Problem: |x+ 4| = 18

Solution:

x = −22,  x = 14

Exercise:

Problem: 1
3 x+ 5 = 3

4 x− 2

For the following exercises, solve the inequality and express the solution using interval
notation.
Exercise:

Problem: |3x− 2| < 7

Solution:

(− 5
3 , 3)

Exercise: ∣ ∣ ∣ ∣



Problem: 1
3 x− 2 ≤ 7

Inverse Functions

For the following exercises, find f−1(x) for each function.
Exercise:

Problem: f(x) = 9 + 10x

Exercise:

Problem: f(x) = x
x+2

Solution:

f−1(x) = −2x
x−1

For the following exercise, find a domain on which the function f is one-to-one and
non-decreasing. Write the domain in interval notation. Then find the inverse of f 
restricted to that domain.
Exercise:

Problem: f(x) = x2 + 1

Exercise:

Problem: Given f (x) = x3 − 5 and g(x) = 3√x+ 5 :

a. Find  f(g(x)) and g(f(x)).
b. What does the answer tell us about the relationship between f(x) and g(x)?

Solution:

a.  f(g(x)) = x and g(f(x)) = x.
b. This tells us that f and g are inverse functions

∣ ∣



For the following exercises, use a graphing utility to determine whether each function
is one-to-one.
Exercise:

Problem: f(x) = 1
x

Solution:

The function is one-to-one. 

Exercise:

Problem: f(x) = −3x2 + x

Solution:

The function is not one-to-one. 



Exercise:

Problem: If f (5) = 2, find f−1(2).

Solution:

5

Exercise:

Problem: If f (1) = 4, find f−1(4).

Practice Test

For the following exercises, determine whether each of the following relations is a
function.
Exercise:

Problem: y = 2x+ 8

Solution:

The relation is a function.

Exercise:



Problem: {(2, 1), (3, 2), (−1, 1), (0,−2)}

For the following exercises, evaluate the function f(x) = −3x2 + 2x  at the given
input.
Exercise:

Problem: f(−2)

Solution:

−16

Exercise:

Problem: f(a)

Exercise:

Problem: Show that the function f(x) = −2(x− 1)2 + 3 is not one-to-one.

Solution:

The graph is a parabola and the graph fails the horizontal line test.

Exercise:

Problem: Write the domain of the function f(x) = √3 − x in interval notation.

Exercise:

Problem: Given f(x) = 2x2 − 5x, find f(a+ 1) − f(1).

Solution:

2a2 − a

Exercise:

Problem: Graph the functionf(x) = {

Exercise:

x+ 1   if −2 < x < 3

    − x    if   x ≥ 3



Problem: 

Find the average rate of change of the function f(x) = 3 − 2x2 + x by finding
f(b)−f(a)

b−a
.

Solution:

−2(a+ b) + 1

For the following exercises, use the functions f(x) = 3 − 2x2 + x and g(x) = √x to
find the composite functions.
Exercise:

Problem: (g ∘ f)(x)

Exercise:

Problem: (g ∘ f)(1)

Solution:

√2

Exercise:

Problem: 

ExpressH(x) = 3√5x2 − 3x as a composition of two functions, f and g, where
(f ∘ g)(x) = H(x).

For the following exercises, graph the functions by translating, stretching, and/or
compressing a toolkit function.
Exercise:

Problem: f(x) = √x+ 6 − 1

Solution:



Exercise:

Problem: f(x) = 1
x+2 − 1

For the following exercises, determine whether the functions are even, odd, or neither.
Exercise:

Problem: f(x) = − 5
x2 + 9x6

Solution:

even

Exercise:

Problem: f(x) = − 5
x3 + 9x5

Exercise:

Problem: f(x) = 1
x

Solution:

odd

Exercise:

Problem: Graph the absolute value function f(x) = −2 |x− 1| + 3.

Exercise:



Problem: Solve|2x− 3| = 17.

Solution:

x = −7 andx = 10

Exercise:

Problem: Solve − 1
3
x− 3 ≥ 17.Express the solution in interval notation.

For the following exercises, find the inverse of the function.
Exercise:

Problem: f(x) = 3x− 5

Solution:

f−1(x) = x+5
3

Exercise:

Problem: f(x) = 4
x+7

For the following exercises, use the graph of g shown in [link].∣ ∣



Exercise:

Problem: On what intervals is the function increasing?

Solution:

(−∞,−1.1) and (1.1,∞)

Exercise:

Problem: On what intervals is the function decreasing?

Exercise:

Problem: 

Approximate the local minimum of the function. Express the answer as an
ordered pair.

Solution:

(1.1,−0.9)

Exercise:



Problem: 

Approximate the local maximum of the function. Express the answer as an
ordered pair.

For the following exercises, use the graph of the piecewise function shown in [link].

Exercise:

Problem: Find f(2).

Solution:

f(2) = 2

Exercise:

Problem: Find f(−2).

Exercise:

Problem: Write an equation for the piecewise function.

Solution:

f(x) = {
|x| if x ≤ 2

3 if x > 2



For the following exercises, use the values listed in [link].

x F(x)

0 1

1 3

2 5

3 7

4 9

5 11

6 13

7 15

8 17

Exercise:

Problem: FindF(6).

Exercise:

Problem: Solve the equationF(x) = 5.

Solution:

x = 2

Exercise:

Problem: Is the graph increasing or decreasing on its domain?



Exercise:

Problem: Is the function represented by the graph one-to-one?

Solution:

yes

Exercise:

Problem: FindF−1(15).

Exercise:

Problem: Given f(x) = −2x+ 11, find f−1(x).

Solution:

f−1(x) = − x−11
2

Glossary

inverse function
for any one-to-one function f(x), the inverse is a function f−1(x) such that
f−1 (f (x)) = x for allx in the domain of f; this also implies that
f (f−1 (x)) = x for allx in the domain of f−1



Linear Functions
In this section, you will:

Represent a linear function.
Determine whether a linear function is increasing, decreasing, or
constant.
Calculate and interpret slope.
Write the point-slope form of an equation.
Write and interpret a linear function.

Just as with the growth of a bamboo plant, there are many situations that
involve constant change over time. Consider, for example, the first
commercial maglev train in the world, the Shanghai MagLev Train ([link]).
It carries passengers comfortably for a 30-kilometer trip from the airport to
the subway station in only eight minutes.[footnote]
http://www.chinahighlights.com/shanghai/transportation/maglev-train.htm

Suppose a maglev train were to travel a long distance, and that the train
maintains a constant speed of 83 meters per second for a period of time
once it is 250 meters from the station. How can we analyze the train’s
distance from the station as a function of time? In this section, we will
investigate a kind of function that is useful for this purpose, and use it to

Shanghai MagLev Train (credit:
“kanegen”/Flickr)



investigate real-world situations such as the train’s distance from the station
at a given point in time.

Representing Linear Functions

The function describing the train’s motion is a linear function, which is
defined as a function with a constant rate of change, that is, a polynomial of
degree 1. There are several ways to represent a linear function, including
word form, function notation, tabular form, and graphical form. We will
describe the train’s motion as a function using each method.

Representing a Linear Function in Word Form

Let’s begin by describing the linear function in words. For the train problem
we just considered, the following word sentence may be used to describe
the function relationship.

The train’s distance from the station is a function of the time during
which the train moves at a constant speed plus its original distance
from the station when it began moving at constant speed.

The speed is the rate of change. Recall that a rate of change is a measure of
how quickly the dependent variable changes with respect to the independent
variable. The rate of change for this example is constant, which means that
it is the same for each input value. As the time (input) increases by 1
second, the corresponding distance (output) increases by 83 meters. The
train began moving at this constant speed at a distance of 250 meters from
the station.

Representing a Linear Function in Function Notation

Another approach to representing linear functions is by using function
notation. One example of function notation is an equation written in the
form known as the slope-intercept form of a line, where xis the input



value, m is the rate of change, and b is the initial value of the dependent
variable.
Equation:

In the example of the train, we might use the notation D(t) in which the
total distance D is a function of the time t. The rate,m, is 83 meters per
second. The initial value of the dependent variable b is the original distance
from the station, 250 meters. We can write a generalized equation to
represent the motion of the train.
Equation:

D(t) = 83t + 250

Representing a Linear Function in Tabular Form

A third method of representing a linear function is through the use of a
table. The relationship between the distance from the station and the time is
represented in [link]. From the table, we can see that the distance changes
by 83 meters for every 1 second increase in time.

Equation form y = mx + b

Equation notation f(x) = mx + b

Tabular representation of the function D showing



Note:
Can the input in the previous example be any real number?
No. The input represents time, so while nonnegative rational and irrational
numbers are possible, negative real numbers are not possible for this
example. The input consists of non-negative real numbers.

Representing a Linear Function in Graphical Form

Another way to represent linear functions is visually, using a graph. We can
use the function relationship from above, D(t) = 83t + 250,to draw a
graph, represented in [link]. Notice the graph is a line. When we plot a
linear function, the graph is always a line.

The rate of change, which is constant, determines the slant, or slope of the
line. The point at which the input value is zero is the vertical intercept, or y-
intercept, of the line. We can see from the graph in [link] that the y-
intercept in the train example we just saw is (0, 250) and represents the
distance of the train from the station when it began moving at a constant
speed.

selected input and output values



Notice that the graph of the train example is restricted, but this is not always
the case. Consider the graph of the line f (x) = 2x+1. Ask yourself what
numbers can be input to the function, that is, what is the domain of the
function? The domain is comprised of all real numbers because any number
may be doubled, and then have one added to the product.

Note:
Linear Function
A linear function is a function whose graph is a line. Linear functions can
be written in the slope-intercept form of a line
Equation:

f(x) = mx + b

where b is the initial or starting value of the function (when input,x = 0 ),
and m is the constant rate of change, or slope of the function. The y-

The graph of D(t) = 83t + 250. Graphs of linear
functions are lines because the rate of change is

constant.



intercept is at (0, b).

Example:
Exercise:

Problem:
Using a Linear Function to Find the Pressure on a Diver

The pressure,P , in pounds per square inch (PSI) on the diver in [link]
depends upon her depth below the water surface, d, in feet. This
relationship may be modeled by the equation, 
P(d) = 0.434d + 14.696. Restate this function in words.

Solution:

(credit: Ilse Reijs and Jan-Noud Hutten)



To restate the function in words, we need to describe each part of the
equation. The pressure as a function of depth equals four hundred
thirty-four thousandths times depth plus fourteen and six hundred
ninety-six thousandths.

Analysis

The initial value, 14.696, is the pressure in PSI on the diver at a depth of 0
feet, which is the surface of the water. The rate of change, or slope, is
0.434 PSI per foot. This tells us that the pressure on the diver increases
0.434 PSI for each foot her depth increases.

Determining whether a Linear Function Is Increasing,
Decreasing, or Constant

The linear functions we used in the two previous examples increased over
time, but not every linear function does. A linear function may be
increasing, decreasing, or constant. For an increasing function, as with the
train example, the output values increase as the input values increase. The
graph of an increasing function has a positive slope. A line with a positive
slope slants upward from left to right as in [link](a). For a decreasing
function, the slope is negative. The output values decrease as the input
values increase. A line with a negative slope slants downward from left to
right as in [link](b). If the function is constant, the output values are the
same for all input values so the slope is zero. A line with a slope of zero is
horizontal as in [link](c).



Note:
Increasing and Decreasing Functions
The slope determines if the function is an increasing linear function, a
decreasing linear function, or a constant function.

f(x) = mx + b is an increasing function if m > 0.
f(x) = mx + b is an decreasing function if m < 0.
f(x) = mx + b is a constant function if m = 0.

Example:
Exercise:

Problem:
Deciding whether a Function Is Increasing, Decreasing, or
Constant

Some recent studies suggest that a teenager sends an average of 60
texts per day.[footnote] For each of the following scenarios, find the
linear function that describes the relationship between the input value
and the output value. Then, determine whether the graph of the
function is increasing, decreasing, or constant.



http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-
are-sending-60-texts-a-day-study-says/

a. The total number of texts a teen sends is considered a function of
time in days. The input is the number of days, and output is the
total number of texts sent.

b. A teen has a limit of 500 texts per month in his or her data plan.
The input is the number of days, and output is the total number
of texts remaining for the month.

c. A teen has an unlimited number of texts in his or her data plan
for a cost of $50 per month. The input is the number of days, and
output is the total cost of texting each month.

Solution:

Analyze each function.

a. The function can be represented as f(x) = 60x where x is the
number of days. The slope, 60, is positive so the function is
increasing. This makes sense because the total number of texts
increases with each day.

b. The function can be represented as f(x) = 500 − 60x where x
is the number of days. In this case, the slope is negative so the
function is decreasing. This makes sense because the number of
texts remaining decreases each day and this function represents
the number of texts remaining in the data plan after x days.

c. The cost function can be represented as f(x) = 50 because the
number of days does not affect the total cost. The slope is 0 so
the function is constant.

Calculating and Interpreting Slope



In the examples we have seen so far, we have had the slope provided for us.
However, we often need to calculate the slope given input and output
values. Given two values for the input,x1 and x2, and two corresponding
values for the output, y1 and y2—which can be represented by a set of
points, (x1,  y1) and (x2,  y2)—we can calculate the slope m, as follows
Equation:

m =
change in output (rise)

change in input (run)
=

Δy

Δx
=

y2 − y1

x2 − x1

where Δy is the vertical displacement and Δx is the horizontal
displacement. Note in function notation two corresponding values for the
output y1 and y2 for the function f,y1 = f(x1) and y2 = f(x2), so we
could equivalently write
Equation:

m =
f(x2)– f(x1)

x2–x1

[link] indicates how the slope of the line between the points,(x1,y1) and 
(x2,y2), is calculated. Recall that the slope measures steepness. The greater
the absolute value of the slope, the steeper the line is.



Note:

The slope of a function is calculated by the change in y
divided by the change in x. It does not matter which

coordinate is used as the (x2, y2) and which is the 
(x1,  y1),as long as each calculation is started with the

elements from the same coordinate pair.



Are the units for slope always units for the output
units for the input

?
Yes. Think of the units as the change of output value for each unit of
change in input value. An example of slope could be miles per hour or
dollars per day. Notice the units appear as a ratio of units for the output
per units for the input.

Note:
Calculate Slope
The slope, or rate of change, of a function m can be calculated according
to the following:
Equation:

m =
change in output (rise)

change in input (run)
=

Δy

Δx
=

y2 − y1

x2 − x1

where x1 and x2 are input values, y1 and y2 are output values.

Note:
Given two points from a linear function, calculate and interpret the
slope.

1. Determine the units for output and input values.
2. Calculate the change of output values and change of input values.
3. Interpret the slope as the change in output values per unit of the input

value.

Example:
Exercise:

Problem:
Finding the Slope of a Linear Function



If f(x) is a linear function, and (3,−2) and (8,1) are points on the
line, find the slope. Is this function increasing or decreasing?

Solution:

The coordinate pairs are (3,−2) and (8,1). To find the rate of change,
we divide the change in output by the change in input.
Equation:

m =
change in output

change in input
=

1 − (−2)

8 − 3
=

3

5

We could also write the slope as m = 0.6. The function is increasing
because m > 0.

Analysis

As noted earlier, the order in which we write the points does not matter
when we compute the slope of the line as long as the first output value, or
y-coordinate, used corresponds with the first input value, or x-coordinate,
used.

Note:
Exercise:

Problem: 

If f(x) is a linear function, and (2,  3) and (0,  4) are points on the
line, find the slope. Is this function increasing or decreasing?

Solution:

m = 4−3
0−2 = 1

−2 = − 1
2 ; decreasing because m < 0.



Example:
Exercise:

Problem:
Finding the Population Change from a Linear Function

The population of a city increased from 23,400 to 27,800 between
2008 and 2012. Find the change of population per year if we assume
the change was constant from 2008 to 2012.

Solution:

The rate of change relates the change in population to the change in
time. The population increased by 27, 800 − 23, 400 = 4,400 people
over the four-year time interval. To find the rate of change, divide the
change in the number of people by the number of years.
Equation:

4,400 people

4 years
= 1,100 

people

year

So the population increased by 1,100 people per year.

Analysis

Because we are told that the population increased, we would expect the
slope to be positive. This positive slope we calculated is therefore
reasonable.

Note:
Exercise:

Problem: 

The population of a small town increased from 1,442 to 1,868
between 2009 and 2012. Find the change of population per year if we
assume the change was constant from 2009 to 2012.



Solution:

m = 1,868−1,442
2,012−2,009 = 426

3 = 142 people per year

Writing the Point-Slope Form of a Linear Equation

Up until now, we have been using the slope-intercept form of a linear
equation to describe linear functions. Here, we will learn another way to
write a linear function, the point-slope form.
Equation:

y − y1 = m (x − x1)

The point-slope form is derived from the slope formula.
Equation:

Keep in mind that the slope-intercept form and the point-slope form can be
used to describe the same function. We can move from one form to another
using basic algebra. For example, suppose we are given an equation in
point-slope form,y − 4 = − 1

2 (x − 6). We can convert it to the slope-
intercept form as shown.
Equation:

m = y−y1

x−x1
assuming x ≠ x1

m (x − x1) = y−y1

x−x1
(x − x1) Multiply both sides by  (x − x1).

m (x − x1) = y − y1 Simplify.

y − y1 = m (x − x1) Rearrange.



Therefore, the same line can be described in slope-intercept form as 
y = − 1

2 x + 7.

Note:
Point-Slope Form of a Linear Equation
The point-slope form of a linear equation takes the form
Equation:

y − y1 = m (x − x1)

where m is the slope,x1 and y1 are the x- and y- coordinates of a specific
point through which the line passes.

Writing the Equation of a Line Using a Point and the Slope

The point-slope form is particularly useful if we know one point and the
slope of a line. Suppose, for example, we are told that a line has a slope of 2
and passes through the point (4, 1). We know that m = 2 and that x1 = 4
and y1 = 1. We can substitute these values into the general point-slope
equation.
Equation:

If we wanted to then rewrite the equation in slope-intercept form, we apply
algebraic techniques.

y − 4 = − 1
2 (x − 6)

y − 4 = − 1
2 x + 3 Distribute the  − 1

2 .

      y = − 1
2 x + 7 Add 4 to each side.

y − y1 = m (x − x1)

y − 1 = 2 (x − 4)



Equation:

Both equations,y − 1 = 2 (x − 4) and y = 2x– 7, describe the same line.
See [link].

Example:
Exercise:

Problem:
Writing Linear Equations Using a Point and the Slope

y − 1 = 2(x − 4)

y − 1 = 2x − 8 Distribute the 2.

       y = 2x − 7 Add 1 to each side.



Write the point-slope form of an equation of a line with a slope of 3
that passes through the point (6, –1). Then rewrite it in the slope-
intercept form.

Solution:

Let’s figure out what we know from the given information. The slope
is 3, so m = 3. We also know one point, so we know x1 = 6and 
y1 = −1. Now we can substitute these values into the general point-
slope equation.
Equation:

Then we use algebra to find the slope-intercept form.
Equation:

Note:
Exercise:

Problem: 

Write the point-slope form of an equation of a line with a slope of –2
that passes through the point (–2,  2). Then rewrite it in the slope-
intercept form.

      y − y1 = m(x − x1)

y − (−1) = 3(x − 6) Substitute known values.

        y + 1 = 3(x − 6) Distribute  − 1 to find point-slope form.

y + 1 = 3(x − 6)

y + 1 = 3x − 18 Distribute 3.

       y = 3x − 19 Simplify to slope-intercept form.



Solution:

y − 2 = −2 (x + 2) ; y = −2x − 2

Writing the Equation of a Line Using Two Points

The point-slope form of an equation is also useful if we know any two
points through which a line passes. Suppose, for example, we know that a
line passes through the points (0,  1) and (3,  2). We can use the
coordinates of the two points to find the slope.
Equation:

Now we can use the slope we found and the coordinates of one of the points
to find the equation for the line. Let use (0, 1) for our point.
Equation:

As before, we can use algebra to rewrite the equation in the slope-intercept
form.
Equation:

    = 2−1
3−0

    = 1
3

m = y2−y1

x2−x1

y − y1 = m (x − x1)

y − 1 = 1
3

(x − 0)



Both equations describe the line shown in [link].

Example:
Exercise:

Problem:
Writing Linear Equations Using Two Points

Write the point-slope form of an equation of a line that passes through
the points (5, 1) and (8, 7). Then rewrite it in the slope-intercept form.

y − 1 = 1
3 (x − 0)

y − 1 = 1
3 x Distribute the  1

3 .

      y = 1
3 x + 1 Add 1 to each side.



Solution:

Let’s begin by finding the slope.
Equation:

So m = 2. Next, we substitute the slope and the coordinates for one
of the points into the general point-slope equation. We can choose
either point, but we will use (5, 1).
Equation:

The point-slope equation of the line is y2– 1 = 2(x2– 5). To rewrite
the equation in slope-intercept form, we use algebra.
Equation:

The slope-intercept equation of the line is y = 2x– 9.

Note:

   = 7−1
8−5

   = 6
3

   = 2

m =
y2−y1

x2−x1

y − y1 = m (x − x1)

y − 1 = 2 (x − 5)

y − 1 = 2(x − 5)

y − 1 = 2x − 10

      y = 2x − 9



Exercise:

Problem: 

Write the point-slope form of an equation of a line that passes through
the points (–1, 3)  and (0, 0). Then rewrite it in the slope-intercept
form.

Solution:

y − 0 = −3 (x − 0); y = −3x

Writing and Interpreting an Equation for a Linear Function

Now that we have written equations for linear functions in both the slope-
intercept form and the point-slope form, we can choose which method to
use based on the information we are given. That information may be
provided in the form of a graph, a point and a slope, two points, and so on.
Look at the graph of the function f in [link].



We are not given the slope of the line, but we can choose any two points on
the line to find the slope. Let’s choose (0,  7) and (4,  4). We can use these
points to calculate the slope.
Equation:

Now we can substitute the slope and the coordinates of one of the points
into the point-slope form.
Equation:

m = y2−y1

x2−x1

   = 4−7
4−0

   = − 3
4

y − y1 = m(x − x1)

 y − 4 = − 3
4 (x − 4)



If we want to rewrite the equation in the slope-intercept form, we would
find
Equation:

If we wanted to find the slope-intercept form without first writing the point-
slope form, we could have recognized that the line crosses the y-axis when
the output value is 7. Therefore, b = 7. We now have the initial value b and
the slope m so we can substitute m and b into the slope-intercept form of a
line.

So the function is f(x) = − 3
4 x + 7, and the linear equation would be 

y = − 3
4 x + 7.

Note:
Given the graph of a linear function, write an equation to represent
the function.

1. Identify two points on the line.
2. Use the two points to calculate the slope.
3. Determine where the line crosses the y-axis to identify the y-intercept

by visual inspection.

y − 4 = − 3
4 (x − 4)

y − 4 = − 3
4 x + 3

      y = − 3
4 x + 7



4. Substitute the slope and y-intercept into the slope-intercept form of a
line equation.

Example:
Exercise:

Problem:
Writing an Equation for a Linear Function

Write an equation for a linear function given a graph of f shown in
[link].

Solution:

Identify two points on the line, such as (0,  2) and (−2, −4). Use the
points to calculate the slope.
Equation:



Substitute the slope and the coordinates of one of the points into the
point-slope form.
Equation:

We can use algebra to rewrite the equation in the slope-intercept form.
Equation:

Analysis

This makes sense because we can see from [link] that the line crosses the
y-axis at the point (0,  2), which is the y-intercept, so b = 2.

   = −4−2
−2−0

   = −6
−2

   = 3

m = y2−y1

x2−x1

y − y1 = m (x − x1)

y − (−4) = 3 (x − (−2))

y + 4 = 3 (x + 2)

y + 4 = 3(x + 2)

y + 4 = 3x + 6

      y = 3x + 2



Example:
Exercise:

Problem:
Writing an Equation for a Linear Cost Function

Suppose Ben starts a company in which he incurs a fixed cost of
$1,250 per month for the overhead, which includes his office rent. His
production costs are $37.50 per item. Write a linear function C where 
C (x) is the cost for x items produced in a given month.

Solution:

The fixed cost is present every month, $1,250. The costs that can vary
include the cost to produce each item, which is $37.50 for Ben. The
variable cost, called the marginal cost, is represented by 37.5. The
cost Ben incurs is the sum of these two costs, represented by 
C (x) = 1250 + 37.5x.



Analysis

If Ben produces 100 items in a month, his monthly cost is represented by
Equation:

So his monthly cost would be $5,000.

Example:
Exercise:

Problem:
Writing an Equation for a Linear Function Given Two Points

If f is a linear function, with f(3) = −2, and f(8) = 1, find an
equation for the function in slope-intercept form.

Solution:

We can write the given points using coordinates.
Equation:

We can then use the points to calculate the slope.
Equation:

C(100) = 1250 + 37.5(100)

            = 5000

f(3) = −2 → (3, −2)

f(8) = 1 → (8, 1)



Substitute the slope and the coordinates of one of the points into the
point-slope form.
Equation:

We can use algebra to rewrite the equation in the slope-intercept form.
Equation:

Note:
Exercise:

Problem: 

If f(x) is a linear function, with f(2) =– 11, and f(4) = −25, find
an equation for the function in slope-intercept form.

Solution:

y = −7x + 3

   =
1−(−2)

8−3

   = 3
5

m = y2−y1

x2−x1

    y − y1 = m(x − x1)

y − (−2) = 3
5 (x − 3)

y + 2 = 3
5 (x − 3)

y + 2 = 3
5 x − 9

5

      y = 3
5 x − 19

5



Modeling Real-World Problems with Linear Functions

In the real world, problems are not always explicitly stated in terms of a
function or represented with a graph. Fortunately, we can analyze the
problem by first representing it as a linear function and then interpreting the
components of the function. As long as we know, or can figure out, the
initial value and the rate of change of a linear function, we can solve many
different kinds of real-world problems.

Note:
Given a linear function f and the initial value and rate of change,
evaluate f (c).

1. Determine the initial value and the rate of change (slope).
2. Substitute the values into f(x) = mx + b.
3. Evaluate the function at x = c.

Example:
Exercise:

Problem:
Using a Linear Function to Determine the Number of Songs in a
Music Collection

Marcus currently has 200 songs in his music collection. Every month,
he adds 15 new songs. Write a formula for the number of songs, N , in
his collection as a function of time, t, the number of months. How
many songs will he own in a year?

Solution:



The initial value for this function is 200 because he currently owns
200 songs, so N(0) = 200, which means that b = 200.

The number of songs increases by 15 songs per month, so the rate of
change is 15 songs per month. Therefore we know that m = 15. We
can substitute the initial value and the rate of change into the slope-
intercept form of a line.

We can write the formula N(t) = 15t + 200.

With this formula, we can then predict how many songs Marcus will
have in 1 year (12 months). In other words, we can evaluate the
function at t = 12.
Equation:

Marcus will have 380 songs in 12 months.

Analysis

Notice that N is an increasing linear function. As the input (the number of
months) increases, the output (number of songs) increases as well.

Example:
Exercise:

Problem:

N(12) = 15(12) + 200

           = 180 + 200

           = 380



Using a Linear Function to Calculate Salary Plus Commission

Working as an insurance salesperson, Ilya earns a base salary plus a
commission on each new policy. Therefore, Ilya’s weekly income, I,
depends on the number of new policies, n, he sells during the week.
Last week he sold 3 new policies, and earned $760 for the week. The
week before, he sold 5 new policies and earned $920. Find an
equation for I (n), and interpret the meaning of the components of the
equation.

Solution:

The given information gives us two input-output pairs: (3,760) and 
(5,920). We start by finding the rate of change.
Equation:

Keeping track of units can help us interpret this quantity. Income
increased by $160 when the number of policies increased by 2, so the
rate of change is $80 per policy. Therefore, Ilya earns a commission
of $80 for each policy sold during the week.

We can then solve for the initial value.
Equation:

m = 920−760
5−3

   = $160
2 policies

   = $80 per policy

           I(n) = 80n + b

            760 = 80(3) + b when n = 3,  I(3) = 760

760 − 80(3) = b

            520 = b



The value of b is the starting value for the function and represents
Ilya’s income when n = 0, or when no new policies are sold. We can
interpret this as Ilya’s base salary for the week, which does not
depend upon the number of policies sold.

We can now write the final equation.
Equation:

I(n) = 80n + 520

Our final interpretation is that Ilya’s base salary is $520 per week and
he earns an additional $80 commission for each policy sold.

Example:
Exercise:

Problem:
Using Tabular Form to Write an Equation for a Linear Function

[link] relates the number of rats in a population to time, in weeks. Use
the table to write a linear equation.

w, number of weeks 0 2 4 6

P(w), number of rats 1000 1080 1160 1240

Solution:



We can see from the table that the initial value for the number of rats
is 1000, so b = 1000.

Rather than solving for m, we can tell from looking at the table that
the population increases by 80 for every 2 weeks that pass. This
means that the rate of change is 80 rats per 2 weeks, which can be
simplified to 40 rats per week.
Equation:

P(w) = 40w + 1000

If we did not notice the rate of change from the table we could still
solve for the slope using any two points from the table. For example,
using (2, 1080) and (6, 1240)
Equation:

Note:
Is the initial value always provided in a table of values like [link]?
No. Sometimes the initial value is provided in a table of values, but
sometimes it is not. If you see an input of 0, then the initial value would be
the corresponding output. If the initial value is not provided because there
is no value of input on the table equal to 0, find the slope, substitute one
coordinate pair and the slope into f(x) = mx + b, and solve for b.

Note:
Exercise:

m = 1240−1080
6−2

   = 160
4

   = 40



Problem:

A new plant food was introduced to a young tree to test its effect on
the height of the tree. [link] shows the height of the tree, in feet, x
months since the measurements began. Write a linear function, H(x),
where x is the number of months since the start of the experiment.

x 0 2 4 8 12

H(x) 12.5 13.5 14.5 16.5 18.5

Solution:

H (x) = 0.5x + 12.5

Note:
Access this online resource for additional instruction and practice with
linear functions.

Linear Functions

Key Equations

http://openstaxcollege.org/l/linearfunctions


slope-intercept form of
a line f(x) = mx + b

slope m =
change in output (rise)

change in input (run)
= Δy

Δx
= y2−y1

x2−x1

point-slope form of a
line y − y1 = m (x − x1)

Key Concepts

The ordered pairs given by a linear function represent points on a line.
Linear functions can be represented in words, function notation,
tabular form, and graphical form. See [link].
The rate of change of a linear function is also known as the slope.
An equation in the slope-intercept form of a line includes the slope and
the initial value of the function.
The initial value, or y-intercept, is the output value when the input of a
linear function is zero. It is the y-value of the point at which the line
crosses the y-axis.
An increasing linear function results in a graph that slants upward from
left to right and has a positive slope.
A decreasing linear function results in a graph that slants downward
from left to right and has a negative slope.
A constant linear function results in a graph that is a horizontal line.
Analyzing the slope within the context of a problem indicates whether
a linear function is increasing, decreasing, or constant. See [link].
The slope of a linear function can be calculated by dividing the
difference between y-values by the difference in corresponding x-
values of any two points on the line. See [link] and [link].
The slope and initial value can be determined given a graph or any two
points on the line.
One type of function notation is the slope-intercept form of an
equation.
The point-slope form is useful for finding a linear equation when given
the slope of a line and one point. See [link].



The point-slope form is also convenient for finding a linear equation
when given two points through which a line passes. See [link].
The equation for a linear function can be written if the slope m and
initial value b are known. See [link], [link], and [link].
A linear function can be used to solve real-world problems. See [link]
and [link].
A linear function can be written from tabular form. See [link].

Section Exercises

Verbal

Exercise:

Problem: 

Terry is skiing down a steep hill. Terry's elevation, E(t), in feet after t
seconds is given by E(t) = 3000 − 70t. Write a complete sentence
describing Terry’s starting elevation and how it is changing over time.

Solution:

Terry starts at an elevation of 3000 feet and descends 70 feet per
second.

Exercise:

Problem: 

Maria is climbing a mountain. Maria's elevation, E(t), in feet after t
minutes is given by E(t) = 1200 + 40t. Write a complete sentence
describing Maria’s starting elevation and how it is changing over time.

Exercise:

Problem: 

Jessica is walking home from a friend’s house. After 2 minutes she is
1.4 miles from home. Twelve minutes after leaving, she is 0.9 miles
from home. What is her rate in miles per hour?



Solution:

3 miles per hour

Exercise:

Problem: 

Sonya is currently 10 miles from home and is walking farther away at
2 miles per hour. Write an equation for her distance from home t hours
from now.

Exercise:

Problem: 

A boat is 100 miles away from the marina, sailing directly toward it at
10 miles per hour. Write an equation for the distance of the boat from
the marina after t hours.

Solution:

d (t) = 100 − 10t

Exercise:

Problem: 

Timmy goes to the fair with $40. Each ride costs $2. How much
money will he have left after riding n rides?

Algebraic

For the following exercises, determine whether the equation of the curve
can be written as a linear function.
Exercise:

Problem: y = 1
4 x + 6



Solution:

Yes.

Exercise:

Problem: y = 3x − 5

Exercise:

Problem: y = 3x2 − 2

Solution:

No.

Exercise:

Problem: 3x + 5y = 15

Exercise:

Problem: 3x2 + 5y = 15

Solution:

No.

Exercise:

Problem: 3x + 5y2 = 15

Exercise:

Problem: −2x2 + 3y2 = 6

Solution:



No.

Exercise:

Problem: − x−3
5 = 2y

For the following exercises, determine whether each function is increasing
or decreasing.
Exercise:

Problem: f (x) = 4x + 3

Solution:

Increasing.

Exercise:

Problem: g (x) = 5x + 6

Exercise:

Problem: a (x) = 5 − 2x

Solution:

Decreasing.

Exercise:

Problem: b (x) = 8 − 3x

Exercise:

Problem: h (x) = −2x + 4

Solution:



Decreasing.

Exercise:

Problem: k (x) = −4x + 1

Exercise:

Problem: j (x) = 1
2
x − 3

Solution:

Increasing.

Exercise:

Problem: p (x) = 1
4 x − 5

Exercise:

Problem: n (x) = − 1
3 x − 2

Solution:

Decreasing.

Exercise:

Problem: m (x) = − 3
8 x + 3

For the following exercises, find the slope of the line that passes through
the two given points.
Exercise:

Problem: (2,  4) and (4,  10)

Solution:



3

Exercise:

Problem: (1,  5) and (4,  11)

Exercise:

Problem: (−1, 4) and (5, 2)

Solution:

– 1
3

Exercise:

Problem: (8, −2) and (4, 6)

Exercise:

Problem: (6,  11) and (−4,  3)

Solution:

4
5

For the following exercises, given each set of information, find a linear
equation satisfying the conditions, if possible.
Exercise:

Problem: f(−5) = −4, and f(5) = 2

Exercise:

Problem: f(−1) = 4 and f(5) = 1

Solution:



f(x) = − 1
2
x + 7

2

Exercise:

Problem: (2, 4) and (4, 10)

Exercise:

Problem: Passes through (1, 5) and (4, 11)

Solution:

y = 2x + 3

Exercise:

Problem: Passes through (−1,  4) and (5,  2)

Exercise:

Problem: Passes through (−2,  8) and (4,  6)

Solution:

y = − 1
3 x + 22

3

Exercise:

Problem: x intercept at (−2,  0) and y intercept at (0, −3)

Exercise:

Problem: x intercept at (−5,  0) and y intercept at (0,  4)

Solution:

y = 4
5 x + 4



Graphical

For the following exercises, find the slope of the lines graphed.
Exercise:

Problem:

Exercise:

Problem:



Solution:

− 5
4

Exercise:

Problem:



For the following exercises, write an equation for the lines graphed.
Exercise:

Problem:



Solution:

y = 2
3 x + 1

Exercise:

Problem:



Exercise:

Problem:



Solution:

y = −2x + 3

Exercise:

Problem:

Exercise:

Problem:



Solution:

y = 3

Exercise:

Problem:



Numeric

For the following exercises, which of the tables could represent a linear
function? For each that could be linear, find a linear equation that models
the data.
Exercise:

Problem:

x
0 5 10 15



g (x) 5 –10 –25 –40

Solution:

Linear, g(x) = −3x + 5

Exercise:

Problem:

x 0 5 10 15

h (x) 5 30 105 230

Exercise:

Problem:

x 0 5 10 15

f (x) –5 20 45 70

Solution:



Linear, f(x) = 5x − 5

Exercise:

Problem:

x 5 10 20 25

k (x) 13 28 58 73

Exercise:

Problem:

x 0 2 4 6

g (x) 6 –19 –44 –69

Solution:

Linear, g(x) = − 25
2
x + 6



Exercise:

Problem:

x 2 4 6 8

f (x) –4 16 36 56

Exercise:

Problem:

x 2 4 6 8

f (x) –4 16 36 56

Solution:

Linear, f(x) = 10x − 24

Exercise:



Problem:

x 0 2 6 8

k (x) 6 31 106 231

Technology

Exercise:

Problem: 

If f is a linear function,f(0.1) = 11.5,   and f(0.4) =– 5.9, find an
equation for the function.

Solution:

f(x) = −58x + 17.3

Exercise:

Problem: 

Graph the function f on a domain of 
[– 10,  10] :  f(x) = 0.02x − 0.01. Enter the function in a graphing
utility. For the viewing window, set the minimum value of x to be −10
and the maximum value of x to be 10.



Exercise:

Problem: 

Graph the function f on a domain of 
[– 10,  10] : fx) = 2, 500x + 4, 000

Solution:

Exercise:

Problem: 

[link] shows the input, w, and output, k, for a linear function k. a. Fill
in the missing values of the table. b. Write the linear function k, round
to 3 decimal places.



w –10 5.5 67.5 b

k 30 –26 a –44

Exercise:

Problem: 

[link] shows the input,p,and output,q,for a linear function q. a. Fill in
the missing values of the table. b. Write the linear function k.

p 0.5 0.8 12 b

q 400 700 a 1,000,000

Solution:

a. a = 11, 900; b = 1001.1 b. q(p) = 1000p − 100

Exercise:

Problem: 

Graph the linear function f on a domain of [−10, 10] for the function
whose slope is 1

8  and y-intercept is 31
16 . Label the points for the input

values of −10 and 10.

Exercise:



Problem: 

Graph the linear function f on a domain of [−0.1, 0.1] for the function
whose slope is 75 and y-intercept is −22.5. Label the points for the
input values of −0.1 and 0.1.

Solution:

Exercise:

Problem: 

Graph the linear function f where f (x) = ax + b on the same set of
axes on a domain of [−4, 4] for the following values of a and b.

i. a = 2;  b = 3
ii. a = 2;  b = 4

iii. a = 2;  b =– 4
iv. a = 2;  b =– 5



Extensions

Exercise:

Problem: 

Find the value of x if a linear function goes through the following
points and has the following slope: (x, 2), (−4, 6), m = 3

Solution:

x = − 16
3

Exercise:

Problem: 

Find the value of y if a linear function goes through the following
points and has the following slope: (10, y), (25, 100), m = −5

Exercise:

Problem: 

Find the equation of the line that passes through the following points: 
(a,  b) and (a,  b + 1)

Solution:

x = a

Exercise:

Problem: 

Find the equation of the line that passes through the following points: 
(2a,  b) and (a,  b + 1)

Exercise:



Problem: 

Find the equation of the line that passes through the following points: 
(a,  0) and (c,  d)

Solution:

y = d
c−a

x − ad
c−a

Real-World Applications

Exercise:

Problem: 

At noon, a barista notices that she has $20 in her tip jar. If she makes
an average of $0.50 from each customer, how much will she have in
her tip jar if she serves n more customers during her shift?

Exercise:

Problem: 

A gym membership with two personal training sessions costs $125,
while gym membership with five personal training sessions costs
$260. What is cost per session?

Solution:

$45 per training session.

Exercise:



Problem: 

A clothing business finds there is a linear relationship between the
number of shirts, n, it can sell and the price, p, it can charge per shirt.
In particular, historical data shows that 1,000 shirts can be sold at a
price of $30, while 3,000 shirts can be sold at a price of $22. Find a
linear equation in the form p(n) = mn + b that gives the price p they
can charge for n shirts.

Exercise:

Problem: 

A phone company charges for service according to the formula: 
C(n) = 24 + 0.1n, where n is the number of minutes talked, and 
C(n) is the monthly charge, in dollars. Find and interpret the rate of
change and initial value.

Solution:

The rate of change is 0.1. For every additional minute talked, the
monthly charge increases by $0.1 or 10 cents. The initial value is 24.
When there are no minutes talked, initially the charge is $24.

Exercise:

Problem: 

A farmer finds there is a linear relationship between the number of
bean stalks, n, she plants and the yield, y, each plant produces. When
she plants 30 stalks, each plant yields 30 oz of beans. When she plants
34 stalks, each plant produces 28 oz of beans. Find a linear
relationship in the form y = mn + b that gives the yield when n stalks
are planted.

Exercise:



Problem: 

A city’s population in the year 1960 was 287,500. In 1989 the
population was 275,900. Compute the rate of growth of the population
and make a statement about the population rate of change in people per
year.

Solution:

The slope is −400. This means for every year between 1960 and 1989,
the population dropped by 400 per year in the city.

Exercise:

Problem: 

A town’s population has been growing linearly. In 2003, the
population was 45,000, and the population has been growing by 1,700
people each year. Write an equation, P (t), for the population t years
after 2003.

Exercise:

Problem: 

Suppose that average annual income (in dollars) for the years 1990
through 1999 is given by the linear function: 
I(x) = 1054x + 23, 286, where x is the number of years after 1990.
Which of the following interprets the slope in the context of the
problem?

a. As of 1990, average annual income was $23,286.
b. In the ten-year period from 1990–1999, average annual income

increased by a total of $1,054.
c. Each year in the decade of the 1990s, average annual income

increased by $1,054.
d. Average annual income rose to a level of $23,286 by the end of

1999.



Solution:

c.

Exercise:

Problem: 

When temperature is 0 degrees Celsius, the Fahrenheit temperature is
32. When the Celsius temperature is 100, the corresponding Fahrenheit
temperature is 212. Express the Fahrenheit temperature as a linear
function of C, the Celsius temperature, F (C).

a. Find the rate of change of Fahrenheit temperature for each unit
change temperature of Celsius.

b. Find and interpret F(28).
c. Find and interpret F(–40).

Glossary

decreasing linear function
a function with a negative slope: If f(x) = mx + b,  then m < 0.

increasing linear function
a function with a positive slope: If f(x) = mx + b,  then m > 0.

linear function
a function with a constant rate of change that is a polynomial of degree
1, and whose graph is a straight line

point-slope form
the equation for a line that represents a linear function of the form 
y − y1 = m (x − x1)

slope
the ratio of the change in output values to the change in input values; a
measure of the steepness of a line



slope-intercept form
the equation for a line that represents a linear function in the form 
f(x) = mx + b

y-intercept
the value of a function when the input value is zero; also known as
initial value



Graphs of Linear Functions
In this section, you will:

Graph linear functions.
Write the equation for a linear function from the graph of a line.
Given the equations of two lines, determine whether their graphs are parallel or perpendicular.
Write the equation of a line parallel or perpendicular to a given line.
Solve a system of linear equations.

Two competing telephone companies offer different payment plans. The two plans charge the same
rate per long distance minute, but charge a different monthly flat fee. A consumer wants to determine
whether the two plans will ever cost the same amount for a given number of long distance minutes
used. The total cost of each payment plan can be represented by a linear function. To solve the
problem, we will need to compare the functions. In this section, we will consider methods of
comparing functions using graphs.

Graphing Linear Functions

In Linear Functions, we saw that that the graph of a linear function is a straight line. We were also
able to see the points of the function as well as the initial value from a graph. By graphing two
functions, then, we can more easily compare their characteristics.

There are three basic methods of graphing linear functions. The first is by plotting points and then
drawing a line through the points. The second is by using the y-intercept and slope. And the third is
by using transformations of the identity function f(x) = x.

Graphing a Function by Plotting Points

To find points of a function, we can choose input values, evaluate the function at these input values,
and calculate output values. The input values and corresponding output values form coordinate pairs.
We then plot the coordinate pairs on a grid. In general, we should evaluate the function at a
minimum of two inputs in order to find at least two points on the graph. For example, given the
function, f(x) = 2x, we might use the input values 1 and 2. Evaluating the function for an input
value of 1 yields an output value of 2, which is represented by the point (1, 2). Evaluating the
function for an input value of 2 yields an output value of 4, which is represented by the point (2, 4).
Choosing three points is often advisable because if all three points do not fall on the same line, we
know we made an error.

Note:
Given a linear function, graph by plotting points.

1. Choose a minimum of two input values.
2. Evaluate the function at each input value.
3. Use the resulting output values to identify coordinate pairs.
4. Plot the coordinate pairs on a grid.
5. Draw a line through the points.



Example:
Exercise:

Problem:
Graphing by Plotting Points

Graph f(x) = − 2
3 x + 5 by plotting points.

Solution:

Begin by choosing input values. This function includes a fraction with a denominator of 3, so
let’s choose multiples of 3 as input values. We will choose 0, 3, and 6.

Evaluate the function at each input value, and use the output value to identify coordinate pairs.
Equation:

Plot the coordinate pairs and draw a line through the points. [link] represents the graph of the
function f(x) = − 2

3 x + 5.

Analysis

x = 0 f(0) = − 2
3 (0) + 5 = 5 ⇒ (0, 5)

x = 3 f(3) = − 2
3 (3) + 5 = 3 ⇒ (3, 3)

x = 6 f(6) = − 2
3 (6) + 5 = 1 ⇒ (6, 1)

The graph of the linear function 
f(x) = − 2

3 x + 5.



The graph of the function is a line as expected for a linear function. In addition, the graph has a
downward slant, which indicates a negative slope. This is also expected from the negative constant
rate of change in the equation for the function.

Note:
Exercise:

Problem: Graph f(x) = − 3
4 x + 6 by plotting points.

Solution:

Graphing a Function Using y-intercept and Slope

Another way to graph linear functions is by using specific characteristics of the function rather than
plotting points. The first characteristic is its y-intercept, which is the point at which the input value is
zero. To find the y-intercept, we can set x = 0 in the equation.

The other characteristic of the linear function is its slope m, which is a measure of its steepness.
Recall that the slope is the rate of change of the function. The slope of a function is equal to the ratio
of the change in outputs to the change in inputs. Another way to think about the slope is by dividing
the vertical difference, or rise, by the horizontal difference, or run. We encountered both the y-
intercept and the slope in Linear Functions.

Let’s consider the following function.
Equation:

f(x) =
1

2
x + 1



The slope is 12 . Because the slope is positive, we know the graph will slant upward from left to right.
The y-intercept is the point on the graph when x = 0. The graph crosses the y-axis at (0, 1). Now we
know the slope and the y-intercept. We can begin graphing by plotting the point (0, 1) We know that
the slope is rise over run, m = rise

run
. From our example, we have m = 1

2
, which means that the rise

is 1 and the run is 2. So starting from our y-intercept (0, 1), we can rise 1 and then run 2, or run 2
and then rise 1. We repeat until we have a few points, and then we draw a line through the points as
shown in [link].

Note:
Graphical Interpretation of a Linear Function
In the equation f(x) = mx + b

b is the y-intercept of the graph and indicates the point (0, b) at which the graph crosses the y-
axis.
m is the slope of the line and indicates the vertical displacement (rise) and horizontal
displacement (run) between each successive pair of points. Recall the formula for the slope:

Equation:

m =
change in output (rise)

change in input (run)
=

Δy

Δx
=

y2 − y1

x2 − x1

Note:
Do all linear functions have y-intercepts?



Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line
parallel to the y-axis does not have a y-intercept, but it is not a function.)

Note:
Given the equation for a linear function, graph the function using the y-intercept and slope.

1. Evaluate the function at an input value of zero to find the y-intercept.
2. Identify the slope as the rate of change of the input value.
3. Plot the point represented by the y-intercept.
4. Use rise

run  to determine at least two more points on the line.
5. Sketch the line that passes through the points.

Example:
Exercise:

Problem:
Graphing by Using the y-intercept and Slope

Graph f(x) = − 2
3 x + 5 using the y-intercept and slope.

Solution:

Evaluate the function at x = 0 to find the y-intercept. The output value when x = 0 is 5, so the
graph will cross the y-axis at (0, 5).

According to the equation for the function, the slope of the line is − 2
3 . This tells us that for

each vertical decrease in the “rise” of – 2 units, the “run” increases by 3 units in the horizontal
direction. We can now graph the function by first plotting the y-intercept on the graph in [link].
From the initial value (0, 5) we move down 2 units and to the right 3 units. We can extend the
line to the left and right by repeating, and then draw a line through the points.



Analysis

The graph slants downward from left to right, which means it has a negative slope as expected.

Note:
Exercise:

Problem: Find a point on the graph we drew in [link] that has a negative x-value.

Solution:

Possible answers include (−3, 7), (−6, 9), or (−9, 11).

Graphing a Function Using Transformations

Another option for graphing is to use transformations of the identity function f(x) = x. A function
may be transformed by a shift up, down, left, or right. A function may also be transformed using a
reflection, stretch, or compression.

Vertical Stretch or Compression

In the equation f(x) = mx, the m is acting as the vertical stretch or compression of the identity
function. When m is negative, there is also a vertical reflection of the graph. Notice in [link] that
multiplying the equation of f(x) = x by m stretches the graph of f by a factor of m units if m > 1
and compresses the graph of f by a factor of m units if 0 < m < 1. This means the larger the
absolute value of m, the steeper the slope.



Vertical Shift

In f(x) = mx + b, the b acts as the vertical shift, moving the graph up and down without affecting
the slope of the line. Notice in [link] that adding a value of b to the equation of f (x) = x shifts the
graph of f a total of b units up if b is positive and |b| units down if b is negative.

Vertical stretches and compressions and reflections on the function f(x) = x.



Using vertical stretches or compressions along with vertical shifts is another way to look at
identifying different types of linear functions. Although this may not be the easiest way to graph this
type of function, it is still important to practice each method.

Note:
Given the equation of a linear function, use transformations to graph the linear function in the
form f (x) = mx + b.

1. Graph f (x) = x.
2. Vertically stretch or compress the graph by a factor m.
3. Shift the graph up or down b units.

This graph illustrates vertical shifts of the function f(x) = x.



Example:
Exercise:

Problem:
Graphing by Using Transformations

Graph f(x) = 1
2 x − 3 using transformations.

Solution:

The equation for the function shows that m = 1
2  so the identity function is vertically

compressed by 12 . The equation for the function also shows that b = −3 so the identity
function is vertically shifted down 3 units. First, graph the identity function, and show the
vertical compression as in [link].

Then show the vertical shift as in [link].

The function, y = x, compressed by a factor of 12 .



Note:
Exercise:

Problem: Graph f(x) = 4 + 2x, using transformations.

Solution:

The function y = 1
2 x, shifted down 3 units.



Note:
In [link], could we have sketched the graph by reversing the order of the transformations?
No. The order of the transformations follows the order of operations. When the function is evaluated
at a given input, the corresponding output is calculated by following the order of operations. This is
why we performed the compression first. For example, following the order: Let the input be 2.
Equation:

Writing the Equation for a Function from the Graph of a Line

Recall that in Linear Functions, we wrote the equation for a linear function from a graph. Now we
can extend what we know about graphing linear functions to analyze graphs a little more closely.
Begin by taking a look at [link]. We can see right away that the graph crosses the y-axis at the point 
(0,  4) so this is the y-intercept.

f(2) = 1
2 (2) − 3

= 1 − 3

= −2



Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s
look at the point (−2, 0). To get from this point to the y-intercept, we must move up 4 units (rise)
and to the right 2 units (run). So the slope must be
Equation:

m =
rise

run
=

4

2
= 2

Substituting the slope and y-intercept into the slope-intercept form of a line gives
Equation:

y = 2x + 4

Note:
Given a graph of linear function, find the equation to describe the function.

1. Identify the y-intercept of an equation.
2. Choose two points to determine the slope.
3. Substitute the y-intercept and slope into the slope-intercept form of a line.

Example:
Exercise:

Problem:
Matching Linear Functions to Their Graphs

Match each equation of the linear functions with one of the lines in [link].



a. f (x) = 2x + 3
b. g (x) = 2x − 3
c. h (x) = −2x + 3

d. j (x) = 1
2 x + 3

Solution:

Analyze the information for each function.

a. This function has a slope of 2 and a y-intercept of 3. It must pass through the point (0, 3)
and slant upward from left to right. We can use two points to find the slope, or we can
compare it with the other functions listed. Function g has the same slope, but a different y-
intercept. Lines I and III have the same slant because they have the same slope. Line III
does not pass through (0,  3) so f must be represented by line I.

b. This function also has a slope of 2, but a y-intercept of −3. It must pass through the point 
(0,−3) and slant upward from left to right. It must be represented by line III.

c. This function has a slope of –2 and a y-intercept of 3. This is the only function listed with
a negative slope, so it must be represented by line IV because it slants downward from left
to right.

d. This function has a slope of 12  and a y-intercept of 3. It must pass through the point (0, 3)
and slant upward from left to right. Lines I and II pass through (0,  3), but the slope of j is
less than the slope of f so the line for j must be flatter. This function is represented by
Line II.

Now we can re-label the lines as in [link].



Finding the x-intercept of a Line

So far, we have been finding the y-intercepts of a function: the point at which the graph of the
function crosses the y-axis. A function may also have an x-intercept, which is the x-coordinate of
the point where the graph of the function crosses the x-axis. In other words, it is the input value when
the output value is zero.

To find the x-intercept, set a function f(x) equal to zero and solve for the value of x. For example,
consider the function shown.
Equation:

f(x) = 3x − 6

Set the function equal to 0 and solve for x.
Equation:

The graph of the function crosses the x-axis at the point (2,  0).

Note:
Do all linear functions have x-intercepts?

0 = 3x − 6

6 = 3x

2 = x

x = 2



No. However, linear functions of the form y = c, where c is a nonzero real number are the only
examples of linear functions with no x-intercept. For example, y = 5 is a horizontal line 5 units
above the x-axis. This function has no x-intercepts, as shown in [link].

Note:
x-intercept
The x-intercept of the function is value of x when f(x) = 0. It can be solved by the equation 
0 = mx + b.

Example:
Exercise:

Problem:
Finding an x-intercept

Find the x-intercept of f(x) = 1
2 x − 3.

Solution:

Set the function equal to zero to solve for x.
Equation:

0 = 1
2

x − 3

3 = 1
2

x

6 = x

x = 6



The graph crosses the x-axis at the point (6,  0).

Analysis

A graph of the function is shown in [link]. We can see that the x-intercept is (6,  0) as we expected.

Note:
Exercise:

Problem: Find the x-intercept of f(x) = 1
4

x − 4.

Solution:

(16,  0)

Describing Horizontal and Vertical Lines

There are two special cases of lines on a graph—horizontal and vertical lines. A horizontal line
indicates a constant output, or y-value. In [link], we see that the output has a value of 2 for every
input value. The change in outputs between any two points, therefore, is 0. In the slope formula, the
numerator is 0, so the slope is 0. If we use m = 0 in the equation f(x) = mx + b, the equation
simplifies to f(x) = b. In other words, the value of the function is a constant. This graph represents
the function f(x) = 2.

The graph of the linear function 
f(x) = 1

2 x − 3.



A vertical line indicates a constant input, or x-value. We can see that the input value for every point
on the line is 2, but the output value varies. Because this input value is mapped to more than one
output value, a vertical line does not represent a function. Notice that between any two points, the
change in the input values is zero. In the slope formula, the denominator will be zero, so the slope of
a vertical line is undefined.

Notice that a vertical line, such as the one in [link], has an x-intercept, but no y-intercept unless it’s
the line x = 0. This graph represents the line x = 2.

A horizontal line representing the function f(x) = 2.



Note:
Horizontal and Vertical Lines
Lines can be horizontal or vertical.
A horizontal line is a line defined by an equation in the form f(x) = b.
A vertical line is a line defined by an equation in the form x = a.

Example:
Exercise:

Problem:
Writing the Equation of a Horizontal Line

Write the equation of the line graphed in [link].

The vertical line, x = 2, which does not represent a
function.



Solution:

For any x-value, the y-value is −4, so the equation is y = −4.

Example:
Exercise:

Problem:
Writing the Equation of a Vertical Line

Write the equation of the line graphed in [link].

Solution:



The constant x-value is 7, so the equation is x = 7.

Determining Whether Lines are Parallel or Perpendicular

The two lines in [link] are parallel lines: they will never intersect. Notice that they have exactly the
same steepness, which means their slopes are identical. The only difference between the two lines is
the y-intercept. If we shifted one line vertically toward the y-intercept of the other, they would
become the same line.

We can determine from their equations whether two lines are parallel by comparing their slopes. If
the slopes are the same and the y-intercepts are different, the lines are parallel. If the slopes are
different, the lines are not parallel.

Unlike parallel lines, perpendicular lines do intersect. Their intersection forms a right, or 90-
degree, angle. The two lines in [link] are perpendicular.

Parallel lines.



Perpendicular lines do not have the same slope. The slopes of perpendicular lines are different from
one another in a specific way. The slope of one line is the negative reciprocal of the slope of the
other line. The product of a number and its reciprocal is 1. So, if m1 and m2 are negative
reciprocals of one another, they can be multiplied together to yield –1.
Equation:

m1m2 = −1

To find the reciprocal of a number, divide 1 by the number. So the reciprocal of 8 is 18 , and the
reciprocal of 18  is 8. To find the negative reciprocal, first find the reciprocal and then change the
sign.

As with parallel lines, we can determine whether two lines are perpendicular by comparing their
slopes, assuming that the lines are neither horizontal nor perpendicular. The slope of each line below
is the negative reciprocal of the other so the lines are perpendicular.
Equation:

The product of the slopes is –1.
Equation:

( )

Perpendicular lines.

f(x) = 1
4 x + 2 negative reciprocal of 1

4  is −4

f(x) = −4x + 3 negative reciprocal of − 4 is  14



−4(
1

4
) = −1

Note:
Parallel and Perpendicular Lines
Two lines are parallel lines if they do not intersect. The slopes of the lines are the same.
Equation:

f (x) = m1x + b1 and g (x) = m2x + b2 are parallel if m1 = m2.

If and only if b1 = b2 and m1 = m2, we say the lines coincide. Coincident lines are the same line.
Two lines are perpendicular lines if they intersect at right angles.
Equation:

f(x) = m1x + b1 and g(x) = m2x + b2 are perpendicular if m1m2 = −1,  and so m2 = −
1

m1
.

Example:
Exercise:

Problem:
Identifying Parallel and Perpendicular Lines

Given the functions below, identify the functions whose graphs are a pair of parallel lines and a
pair of perpendicular lines.
Equation:

Solution:

Parallel lines have the same slope. Because the functions f(x) = 2x + 3 and j(x) = 2x − 6
each have a slope of 2, they represent parallel lines. Perpendicular lines have negative
reciprocal slopes. Because −2 and 12  are negative reciprocals, the equations, g(x) = 1

2 x − 4

and h(x) = −2x + 2 represent perpendicular lines.

Analysis

A graph of the lines is shown in [link].

f(x) = 2x + 3 h(x) = −2x + 2

g(x) = 1
2 x − 4 j(x) = 2x − 6



The graph shows that the lines f(x) = 2x + 3 and j(x) = 2x– 6 are parallel, and the lines 
g(x) = 1

2
x– 4 and h(x) = −2x + 2 are perpendicular.

Writing the Equation of a Line Parallel or Perpendicular to a Given Line

If we know the equation of a line, we can use what we know about slope to write the equation of a
line that is either parallel or perpendicular to the given line.

Writing Equations of Parallel Lines

Suppose for example, we are given the following equation.
Equation:

f(x) = 3x + 1

We know that the slope of the line formed by the function is 3. We also know that the y-intercept is 
(0, 1). Any other line with a slope of 3 will be parallel to f(x). So the lines formed by all of the
following functions will be parallel to f(x).
Equation:

g(x) = 3x + 6

h(x) = 3x + 1

p(x) = 3x + 2
3



Suppose then we want to write the equation of a line that is parallel to f and passes through the point
(1,  7). We already know that the slope is 3. We just need to determine which value for b will give
the correct line. We can begin with the point-slope form of an equation for a line, and then rewrite it
in the slope-intercept form.
Equation:

So g(x) = 3x + 4 is parallel to f (x) = 3x + 1 and passes through the point (1,  7).

Note:
Given the equation of a function and a point through which its graph passes, write the
equation of a line parallel to the given line that passes through the given point.

1. Find the slope of the function.
2. Substitute the given values into either the general point-slope equation or the slope-intercept

equation for a line.
3. Simplify.

Example:
Exercise:

Problem:
Finding a Line Parallel to a Given Line

Find a line parallel to the graph of f(x) = 3x + 6 that passes through the point (3,  0).

Solution:

The slope of the given line is 3. If we choose the slope-intercept form, we can substitute 
m = 3, x = 3, and f(x) = 0 into the slope-intercept form to find the y-intercept.
Equation:

The line parallel to f(x) that passes through (3,  0) is g(x) = 3x − 9.

Analysis

y − y1 = m(x − x1)

y − 7 = 3(x − 1)

y − 7 = 3x − 3

        y = 3x + 4

g(x) = 3x + b

     0 = 3(3) + b

     b =–9



We can confirm that the two lines are parallel by graphing them. [link] shows that the two lines will
never intersect.

Writing Equations of Perpendicular Lines

We can use a very similar process to write the equation for a line perpendicular to a given line.
Instead of using the same slope, however, we use the negative reciprocal of the given slope. Suppose
we are given the following function:
Equation:

f (x) = 2x + 4

The slope of the line is 2, and its negative reciprocal is − 1
2 . Any function with a slope of − 1

2  will
be perpendicular to f(x). So the lines formed by all of the following functions will be perpendicular
to f(x).
Equation:

As before, we can narrow down our choices for a particular perpendicular line if we know that it
passes through a given point. Suppose then we want to write the equation of a line that is
perpendicular to f(x) and passes through the point (4,  0). We already know that the slope is − 1

2
.

Now we can use the point to find the y-intercept by substituting the given values into the slope-
intercept form of a line and solving for b.
Equation:

The equation for the function with a slope of − 1
2

 and a y-intercept of 2 is
Equation:

g(x) = −
1

2
x + 2.

[missing_resource: CNX_Precalc_Figure_02_02_022n.jpg]

g(x) = − 1
2 x + 4

h(x) = − 1
2 x + 2

p(x) = − 1
2 x − 1

2

g(x) = mx + b

0 = − 1
2 (4) + b

0 = −2 + b

2 = b

b = 2



So g(x) = − 1
2 x + 2 is perpendicular to f (x) = 2x + 4 and passes through the point (4,  0). Be

aware that perpendicular lines may not look obviously perpendicular on a graphing calculator unless
we use the square zoom feature.

Note:
A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines
are perpendicular, but the product of their slopes is not –1. Doesn’t this fact contradict the
definition of perpendicular lines?
No. For two perpendicular linear functions, the product of their slopes is –1. However, a vertical
line is not a function so the definition is not contradicted.

Note:
Given the equation of a function and a point through which its graph passes, write the
equation of a line perpendicular to the given line.

1. Find the slope of the function.
2. Determine the negative reciprocal of the slope.
3. Substitute the new slope and the values for x and y from the coordinate pair provided into 

g (x) = mx + b.
4. Solve for b.
5. Write the equation for the line.

Example:
Exercise:

Problem:
Finding the Equation of a Perpendicular Line

Find the equation of a line perpendicular to f(x) = 3x + 3 that passes through the point 
(3,  0).

Solution:

The original line has slope m = 3, so the slope of the perpendicular line will be its negative
reciprocal, or − 1

3 . Using this slope and the given point, we can find the equation for the line.
Equation:

g(x) =– 1
3 x + b

     0 =– 1
3 (3) + b

     1 = b

     b = 1



The line perpendicular to f(x) that passes through (3,  0) is g(x) = − 1
3 x + 1.

Analysis

A graph of the two lines is shown in [link] below.

Note:
Exercise:

Problem:

Given the function h(x) = 2x − 4, write an equation for the line passing through (0, 0) that is

a. parallel to h(x)
b. perpendicular to h(x)

Solution:

a f(x) = 2x b g(x) = − 1
2 x

Note:
Given two points on a line and a third point, write the equation of the perpendicular line that
passes through the point.



1. Determine the slope of the line passing through the points.
2. Find the negative reciprocal of the slope.
3. Use the slope-intercept form or point-slope form to write the equation by substituting the

known values.
4. Simplify.

Example:
Exercise:

Problem:
Finding the Equation of a Line Perpendicular to a Given Line Passing through a Point

A line passes through the points (−2,  6) and (4, 5). Find the equation of a perpendicular line
that passes through the point (4, 5).

Solution:

From the two points of the given line, we can calculate the slope of that line.
Equation:

Find the negative reciprocal of the slope.
Equation:

We can then solve for the y-intercept of the line passing through the point (4, 5).
Equation:

m1 =
5−6

4−(−2)

= −1
6

= − 1
6

m2 =
−1
− 1

6

= −1 (− 6
1
)

= 6

g(x) = 6x + b

5 = 6(4) + b

5 = 24 + b

−19 = b

b = −19



The equation for the line that is perpendicular to the line passing through the two given points
and also passes through point (4, 5) is
Equation:

y = 6x − 19

Note:
Exercise:

Problem: 

A line passes through the points, (−2,−15) and (2,−3). Find the equation of a perpendicular
line that passes through the point, (6, 4).

Solution:

y =– 1
3 x + 6

Solving a System of Linear Equations Using a Graph

A system of linear equations includes two or more linear equations. The graphs of two lines will
intersect at a single point if they are not parallel. Two parallel lines can also intersect if they are
coincident, which means they are the same line and they intersect at every point. For two lines that
are not parallel, the single point of intersection will satisfy both equations and therefore represent the
solution to the system.

To find this point when the equations are given as functions, we can solve for an input value so that 
f(x) = g(x). In other words, we can set the formulas for the lines equal to one another, and solve
for the input that satisfies the equation.

Example:
Exercise:

Problem:
Finding a Point of Intersection Algebraically

Find the point of intersection of the lines h(t) = 3t − 4 and j(t) = 5 − t.

Solution:

Set h(t) = j(t).
Equation:



This tells us the lines intersect when the input is 94 .

We can then find the output value of the intersection point by evaluating either function at this
input.
Equation:

These lines intersect at the point ( 9
4 ,

11
4 ).

Analysis

Looking at [link], this result seems reasonable.

Note:
If we were asked to find the point of intersection of two distinct parallel lines, should
something in the solution process alert us to the fact that there are no solutions?
Yes. After setting the two equations equal to one another, the result would be the contradiction “0 =
non-zero real number”.

3t − 4 = 5 − t

     4t = 9

       t = 9
4

         = 11
4

j ( 9
4 ) = 5 − 9

4



Note:
Exercise:

Problem: Look at the graph in [link] and identify the following for the function j(t) :

a. y-intercept
b. x-intercept(s)
c. slope
d. Is j(t) parallel or perpendicular to h(t) (or neither)?
e. Is j(t) an increasing or decreasing function (or neither)?
f. Write a transformation description for j(t) from the identity toolkit function f(x) = x.

Solution:

a. (0, 5)
b. (5,  0)
c. Slope -1
d. Neither parallel nor perpendicular
e. Decreasing function
f. Given the identity function, perform a vertical flip (over the t-axis) and shift up 5 units.

Example:
Exercise:

Problem:
Finding a Break-Even Point

A company sells sports helmets. The company incurs a one-time fixed cost for $250,000. Each
helmet costs $120 to produce, and sells for $140.

a. Find the cost function, C, to produce x helmets, in dollars.
b. Find the revenue function, R, from the sales of x helmets, in dollars.
c. Find the break-even point, the point of intersection of the two graphs C and R.

Solution:

a. The cost function in the sum of the fixed cost, $125,000, and the variable cost, $120 per
helmet.
Equation:

C (x) = 120x + 250, 000

b. The revenue function is the total revenue from the sale of x helmets, R (x) = 140x.
c. The break-even point is the point of intersection of the graph of the cost and revenue

functions. To find the x-coordinate of the coordinate pair of the point of intersection, set



the two equations equal, and solve for x.
Equation:

To find y, evaluate either the revenue or the cost function at 12,500.
Equation:

The break-even point is (12,500,1,750,000).  

Analysis

This means if the company sells 12,500 helmets, they break even; both the sales and cost incurred
equaled 1.75 million dollars. See [link]

                   C(x) = R(x)

250, 000 + 120x = 140x

            250, 000 = 20x

              12, 500 = x

                        x = 12, 500

R(x) = 140(12, 500)

= $1, 750, 000



Note:
Access these online resources for additional instruction and practice with graphs of linear functions.

Finding Input of Function from the Output and Graph
Graphing Functions using Tables

Key Concepts

Linear functions may be graphed by plotting points or by using the y-intercept and slope. See
[link] and [link].
Graphs of linear functions may be transformed by using shifts up, down, left, or right, as well as
through stretches, compressions, and reflections. See [link].
The y-intercept and slope of a line may be used to write the equation of a line.

http://openstaxcollege.org/l/findinginput
http://openstaxcollege.org/l/graphwithtable


The x-intercept is the point at which the graph of a linear function crosses the x-axis. See [link]
and [link].
Horizontal lines are written in the form, f(x) = b. See [link].
Vertical lines are written in the form, x = b. See [link].
Parallel lines have the same slope.
Perpendicular lines have negative reciprocal slopes, assuming neither is vertical. See [link].
A line parallel to another line, passing through a given point, may be found by substituting the
slope value of the line and the x- and y-values of the given point into the equation, 
f(x) = mx + b, and using the b that results. Similarly, the point-slope form of an equation can
also be used. See [link].
A line perpendicular to another line, passing through a given point, may be found in the same
manner, with the exception of using the negative reciprocal slope. See [link] and [link].
A system of linear equations may be solved setting the two equations equal to one another and
solving for x. The y-value may be found by evaluating either one of the original equations
using this x-value.
A system of linear equations may also be solved by finding the point of intersection on a graph.
See [link] and [link].

Section Exercises

Verbal

Exercise:

Problem: 

If the graphs of two linear functions are parallel, describe the relationship between the slopes
and the y-intercepts.

Solution:

The slopes are equal; y-intercepts are not equal.

Exercise:

Problem: 

If the graphs of two linear functions are perpendicular, describe the relationship between the
slopes and the y-intercepts.

Exercise:

Problem: 

If a horizontal line has the equation f (x) = a and a vertical line has the equation x = a, what
is the point of intersection? Explain why what you found is the point of intersection.

Solution:

The point of intersection is (a, a). This is because for the horizontal line, all of the y
coordinates are a and for the vertical line, all of the x coordinates are a. The point of
intersection will have these two characteristics.



Exercise:

Problem: 

Explain how to find a line parallel to a linear function that passes through a given point.

Exercise:

Problem: 

Explain how to find a line perpendicular to a linear function that passes through a given point.

Solution:

First, find the slope of the linear function. Then take the negative reciprocal of the slope; this is
the slope of the perpendicular line. Substitute the slope of the perpendicular line and the
coordinate of the given point into the equation y = mx + b and solve for b. Then write the
equation of the line in the form y = mx + b by substituting in m and b.

Algebraic

For the following exercises, determine whether the lines given by the equations below are parallel,
perpendicular, or neither parallel nor perpendicular:
Exercise:

Problem: 

Exercise:

Problem: 

Solution:

neither parallel or perpendicular

Exercise:

Problem: 

Exercise:

Problem: 

Solution:

4x − 7y = 10

7x + 4y = 1

3y + x = 12

−y = 8x + 1

3y + 4x = 12

−6y = 8x + 1

6x − 9y = 10

3x + 2y = 1



perpendicular

Exercise:

Problem: 

Exercise:

Problem: 

Solution:

parallel

For the following exercises, find the x- and y-intercepts of each equation
Exercise:

Problem: f (x) = −x + 2

Exercise:

Problem: g (x) = 2x + 4

Solution:

(– 2, 0); (0, 4)

Exercise:

Problem: h (x) = 3x − 5

Exercise:

Problem: k (x) = −5x + 1

Solution:

( 1
5 , 0); (0, 1)

Exercise:

Problem: −2x + 5y = 20

Exercise:

Problem: 7x + 2y = 56

y = 2
3 x + 1

3x + 2y = 1

y = 3
4 x + 1

−3x + 4y = 1



Solution:

(8, 0); (0, 28)

For the following exercises, use the descriptions of each pair of lines given below to find the slopes
of Line 1 and Line 2. Is each pair of lines parallel, perpendicular, or neither?
Exercise:

Problem:

Line 1: Passes through (0, 6) and (3,−24)
Line 2: Passes through (−1, 19) and (8,−71)

Exercise:

Problem:

Line 1: Passes through (−8,−55) and (10, 89)
Line 2: Passes through (9,−44) and (4,−14)

Solution:

Line 1 :  m = 8   Line 2 :  m =–6   Neither

Exercise:

Problem:

Line 1: Passes through (2, 3) and (4,−1)
Line 2: Passes through (6, 3) and (8, 5)

Exercise:

Problem:

Line 1: Passes through (1, 7) and (5, 5)
Line 2: Passes through (−1,−3) and (1, 1)

Solution:

Line 1 :  m =– 1
2    Line 2 :  m = 2   Perpendicular

Exercise:

Problem:

Line 1: Passes through (0, 5) and (3, 3)
Line 2: Passes through (1,−5) and (3,−2)

Exercise:



Problem:

Line 1: Passes through (2, 5) and (5,−1)
Line 2: Passes through (−3, 7) and (3,−5)

Solution:

Line 1 :  m =–2   Line 2 :  m =–2   Parallel

Exercise:

Problem: 

Write an equation for a line parallel to f (x) = −5x − 3 and passing through the point 
(2,  –12).

Exercise:

Problem: 

Write an equation for a line parallel to g(x) = 3x − 1 and passing through the point (4, 9).

Solution:

g(x) = 3x − 3

Exercise:

Problem: 

Write an equation for a line perpendicular to h(t) = −2t + 4 and passing through the point 
(-4,  –1).

Exercise:

Problem: 

Write an equation for a line perpendicular to p(t) = 3t + 4 and passing through the point 
(3, 1).

Solution:

p(t) = − 1
3 t + 2

Exercise:

Problem: Find the point at which the line f(x) = −2x − 1 intersects the line g(x) = −x.

Exercise:

Problem: Find the point at which the line f(x) = 2x + 5 intersects the line g(x) = −3x − 5.

Solution:



(−2, 1)

Exercise:

Problem: 

Use algebra to find the point at which the line f (x) =   − 4
5

x  + 274
25

 intersects the line 
h (x) = 9

4 x + 73
10 .

Exercise:

Problem: 

Use algebra to find the point at which the line f (x) = 7
4 x + 457

60  intersects the line 
g (x) = 4

3 x + 31
5 .

Solution:

(− 17
5 , 5

3 )

Graphical

For the following exercises, match the given linear equation with its graph in [link].

Exercise:

Problem: f (x) = −x − 1

Exercise:



Problem: f (x) = −2x − 1

Solution:

F

Exercise:

Problem: f (x) = − 1
2

x − 1

Exercise:

Problem: f (x) = 2

Solution:

C

Exercise:

Problem: f (x) = 2 + x

Exercise:

Problem: f (x) = 3x + 2

Solution:

A

For the following exercises, sketch a line with the given features.
Exercise:

Problem: An x-intercept of (– 4,  0) and y-intercept of (0,  –2)

Exercise:

Problem: An x-intercept of (– 2,  0) and y-intercept of (0,  4)

Solution:



Exercise:

Problem: A y-intercept of (0,  7) and slope − 3
2

Exercise:

Problem: A y-intercept of (0,  3) and slope 25

Solution:



Exercise:

Problem: Passing through the points (– 6,  –2) and (6,  –6)

Exercise:

Problem: Passing through the points (– 3,  –4) and (3,  0)

Solution:



For the following exercises, sketch the graph of each equation.
Exercise:

Problem: f (x) = −2x − 1

Exercise:

Problem: g (x) = −3x + 2

Solution:

Exercise:

Problem: h (x) = 1
3 x + 2

Exercise:

Problem: k (x) = 2
3 x − 3

Solution:



Exercise:

Problem: f (t) = 3 + 2t

Exercise:

Problem: p (t) = −2 + 3t

Solution:



Exercise:

Problem: x = 3

Exercise:

Problem: x = −2

Solution:



Exercise:

Problem: r (x) = 4

Exercise:

Problem: q (x) = 3

Solution:



Exercise:

Problem: 4x = −9y + 36

Exercise:

Problem: x
3
− y

4
= 1

Solution:



Exercise:

Problem: 3x − 5y = 15

Exercise:

Problem: 3x = 15

Solution:



Exercise:

Problem: 3y = 12

Exercise:

Problem: 

If g(x) is the transformation of f(x) = x after a vertical compression by 3
4
, a shift right by 2,

and a shift down by 4

a. Write an equation for g (x).
b. What is the slope of this line?
c. Find the y-intercept of this line.

Solution:

ag (x) = 0.75x − 5.5 b 0.75 c (0,−5.5)

Exercise:



Problem: 

If g(x) is the transformation of f(x) = x after a vertical compression by 13 , a shift left by 1,
and a shift up by 3

a. Write an equation for g (x).
b. What is the slope of this line?
c. Find the y-intercept of this line.

For the following exercises,, write the equation of the line shown in the graph.
Exercise:

Problem:

Solution:

y = 3

Exercise:

Problem:



Exercise:

Problem:

Solution:

x = −3

Exercise:



Problem:

For the following exercises, find the point of intersection of each pair of lines if it exists. If it does
not exist, indicate that there is no point of intersection.
Exercise:

Problem: 

Solution:

no point of intersection

Exercise:

Problem: 

Exercise:

Problem: 

Solution:

(2,  7)

Exercise:

Problem: 

Exercise:

y = 3
4 x + 1

−3x + 4y = 12

2x − 3y = 12

5y + x = 30

2x = y − 3

y + 4x = 15

x − 2y + 2 = 3

x − y = 3



Problem: 

Solution:

(– 10,  –5)

Extensions

Exercise:

Problem: 

Find the equation of the line parallel to the line g (x) = −0.01x+2.01 through the point 
(1,  2).

Exercise:

Problem: 

Find the equation of the line perpendicular to the line g (x) = −0.01x+2.01 through the point 
(1,  2).

Solution:

y = 100x − 98

For the following exercises, use the functions f (x) = −0.1x+200 and g (x) = 20x + 0.1.
Exercise:

Problem: Find the point of intersection of the lines f and g.

Exercise:

Problem: Where is f (x) greater than g (x)? Where is g (x) greater than f (x)?

Solution:

x < 1999
201 x > 1999

201

Real-World Applications

Exercise:

Problem: A car rental company offers two plans for renting a car.

5x + 3y = −65

x − y = −5



Plan A: $30 per day and $0.18 per mile
Plan B: $50 per day with free unlimited mileage

How many miles would you need to drive for plan B to save you money?

Exercise:

Problem: A cell phone company offers two plans for minutes.

Plan A: $20 per month and $1 for every one hundred texts.
Plan B: $50 per month with free unlimited texts.

How many texts would you need to send per month for plan B to save you money?

Solution:

Less than 3000 texts

Exercise:

Problem: A cell phone company offers two plans for minutes.

Plan A: $15 per month and $2 for every 300 texts.
Plan B: $25 per month and $0.50 for every 100 texts.

How many texts would you need to send per month for plan B to save you money?

Glossary

horizontal line
a line defined by f(x) = b, where b is a real number. The slope of a horizontal line is 0.

parallel lines
two or more lines with the same slope

perpendicular lines
two lines that intersect at right angles and have slopes that are negative reciprocals of each other

vertical line
a line defined by x = a, where a is a real number. The slope of a vertical line is undefined.

x-intercept
the point on the graph of a linear function when the output value is 0; the point at which the
graph crosses the horizontal axis



Modeling with Linear Functions
In this section, you will:

Identify steps for modeling and solving.
Build linear models from verbal descriptions.
Build systems of linear models.

Emily is a college student who plans to spend a summer in Seattle. She has
saved $3,500 for her trip and anticipates spending $400 each week on rent,
food, and activities. How can we write a linear model to represent her
situation? What would be the x-intercept, and what can she learn from it?
To answer these and related questions, we can create a model using a linear
function. Models such as this one can be extremely useful for analyzing
relationships and making predictions based on those relationships. In this
section, we will explore examples of linear function models.

(credit: EEK Photography/Flickr)



Identifying Steps to Model and Solve Problems

When modeling scenarios with linear functions and solving problems
involving quantities with a constant rate of change, we typically follow the
same problem strategies that we would use for any type of function. Let’s
briefly review them:

1. Identify changing quantities, and then define descriptive variables to
represent those quantities. When appropriate, sketch a picture or define
a coordinate system.

2. Carefully read the problem to identify important information. Look for
information that provides values for the variables or values for parts of
the functional model, such as slope and initial value.

3. Carefully read the problem to determine what we are trying to find,
identify, solve, or interpret.

4. Identify a solution pathway from the provided information to what we
are trying to find. Often this will involve checking and tracking units,
building a table, or even finding a formula for the function being used
to model the problem.

5. When needed, write a formula for the function.
6. Solve or evaluate the function using the formula.
7. Reflect on whether your answer is reasonable for the given situation

and whether it makes sense mathematically.
8. Clearly convey your result using appropriate units, and answer in full

sentences when necessary.

Building Linear Models

Now let’s take a look at the student in Seattle. In her situation, there are two
changing quantities: time and money. The amount of money she has
remaining while on vacation depends on how long she stays. We can use
this information to define our variables, including units.

Output:M, money remaining, in dollars
Input: t, time, in weeks

So, the amount of money remaining depends on the number of weeks:M(t)



We can also identify the initial value and the rate of change.

Initial Value: She saved $3,500, so $3,500 is the initial value forM.
Rate of Change: She anticipates spending $400 each week, so –$400
per week is the rate of change, or slope.

Notice that the unit of dollars per week matches the unit of our output
variable divided by our input variable. Also, because the slope is negative,
the linear function is decreasing. This should make sense because she is
spending money each week.

The rate of change is constant, so we can start with the linear model
M (t) = mt + b. Then we can substitute the intercept and slope provided.

To find thex-intercept, we set the output to zero, and solve for the input.
Equation:

Thex-intercept is 8.75 weeks. Because this represents the input value when
the output will be zero, we could say that Emily will have no money left
after 8.75 weeks.

When modeling any real-life scenario with functions, there is typically a
limited domain over which that model will be valid—almost no trend
continues indefinitely. Here the domain refers to the number of weeks. In
this case, it doesn’t make sense to talk about input values less than zero. A
negative input value could refer to a number of weeks before she saved

0 = −400t + 3500

t = 3500
400

= 8.75



$3,500, but the scenario discussed poses the question once she saved $3,500
because this is when her trip and subsequent spending starts. It is also likely
that this model is not valid after thex-intercept, unless Emily will use a
credit card and goes into debt. The domain represents the set of input
values, so the reasonable domain for this function is 0 ≤ t ≤ 8.75.

In the above example, we were given a written description of the situation.
We followed the steps of modeling a problem to analyze the information.
However, the information provided may not always be the same.
Sometimes we might be provided with an intercept. Other times we might
be provided with an output value. We must be careful to analyze the
information we are given, and use it appropriately to build a linear model.

Using a Given Intercept to Build a Model

Some real-world problems provide the y-intercept, which is the constant or
initial value. Once the y-intercept is known, the x-intercept can be
calculated. Suppose, for example, that Hannah plans to pay off a no-interest
loan from her parents. Her loan balance is $1,000. She plans to pay $250
per month until her balance is $0. The y-intercept is the initial amount of
her debt, or $1,000. The rate of change, or slope, is -$250 per month. We
can then use the slope-intercept form and the given information to develop
a linear model.
Equation:

Now we can set the function equal to 0, and solve for x to find the x-
intercept.
Equation:

f(x) = mx + b

= −250x + 1000



Thex-intercept is the number of months it takes her to reach a balance of
$0. Thex-intercept is 4 months, so it will take Hannah four months to pay
off her loan.

Using a Given Input and Output to Build a Model

Many real-world applications are not as direct as the ones we just
considered. Instead they require us to identify some aspect of a linear
function. We might sometimes instead be asked to evaluate the linear model
at a given input or set the equation of the linear model equal to a specified
output.

Note:
Given a word problem that includes two pairs of input and output
values, use the linear function to solve a problem.

1. Identify the input and output values.
2. Convert the data to two coordinate pairs.
3. Find the slope.
4. Write the linear model.
5. Use the model to make a prediction by evaluating the function at a

given x-value.
6. Use the model to identify an x-value that results in a given y-value.
7. Answer the question posed.

0 = −250x + 1000

1000 = 250x

4 = x

x = 4



Example:
Exercise:

Problem:
Using a Linear Model to Investigate a Town’s Population

A town’s population has been growing linearly. In 2004 the
population was 6,200. By 2009 the population had grown to 8,100.
Assume this trend continues.

a. Predict the population in 2013.
b. Identify the year in which the population will reach 15,000.

Solution:

The two changing quantities are the population size and time. While
we could use the actual year value as the input quantity, doing so
tends to lead to very cumbersome equations because the y-intercept
would correspond to the year 0, more than 2000 years ago!

To make computation a little nicer, we will define our input as the
number of years since 2004:

Input: t, years since 2004
Output: P(t), the town’s population

To predict the population in 2013 (t = 9 ), we would first need an
equation for the population. Likewise, to find when the population
would reach 15,000, we would need to solve for the input that would
provide an output of 15,000. To write an equation, we need the initial
value and the rate of change, or slope.

To determine the rate of change, we will use the change in output per
change in input.
Equation:

h



m =
change in output

change in input

The problem gives us two input-output pairs. Converting them to
match our defined variables, the year 2004 would correspond to 
t = 0, giving the point (0, 6200). Notice that through our clever
choice of variable definition, we have “given” ourselves the y-
intercept of the function. The year 2009 would correspond to t = 5,
giving the point (5, 8100).

The two coordinate pairs are (0, 6200) and (5, 8100). Recall that we
encountered examples in which we were provided two points earlier
in the chapter. We can use these values to calculate the slope.
Equation:

We already know the y-intercept of the line, so we can immediately
write the equation:
Equation:

P(t) = 380t + 6200

To predict the population in 2013, we evaluate our function at t = 9.
Equation:

    = 1900
5

    = 380 people per year

m = 8100−6200
5−0

P(9) = 380(9) + 6, 200

       = 9, 620



If the trend continues, our model predicts a population of 9,620 in
2013.

To find when the population will reach 15,000, we can set 
P(t) = 15000 and solve for t.
Equation:

Our model predicts the population will reach 15,000 in a little more
than 23 years after 2004, or somewhere around the year 2027.

Note:
Exercise:

Problem:

A company sells doughnuts. They incur a fixed cost of $25,000 for
rent, insurance, and other expenses. It costs $0.25 to produce each
doughnut.

a. Write a linear model to represent the cost C of the company as a
function ofx, the number of doughnuts produced.

b. Find and interpret the y-intercept.

Solution:

C (x) = 0.25x + 25, 000 The y-intercept is (0, 25, 000). If the
company does not produce a single doughnut, they still incur a cost of
$25,000.

15000 = 380t + 6200

  8800 = 380t

         t ≈ 23.158



Note:
Exercise:

Problem: 

A city’s population has been growing linearly. In 2008, the population
was 28,200. By 2012, the population was 36,800. Assume this trend
continues.

a. Predict the population in 2014.
b. Identify the year in which the population will reach 54,000.

Solution:

41,100 2020

Using a Diagram to Model a Problem

It is useful for many real-world applications to draw a picture to gain a
sense of how the variables representing the input and output may be used to
answer a question. To draw the picture, first consider what the problem is
asking for. Then, determine the input and the output. The diagram should
relate the variables. Often, geometrical shapes or figures are drawn.
Distances are often traced out. If a right triangle is sketched, the
Pythagorean Theorem relates the sides. If a rectangle is sketched, labeling
width and height is helpful.

Example:
Exercise:

Problem:
Using a Diagram to Model Distance Walked



Anna and Emanuel start at the same intersection. Anna walks east at 4
miles per hour while Emanuel walks south at 3 miles per hour. They
are communicating with a two-way radio that has a range of 2 miles.
How long after they start walking will they fall out of radio contact?

Solution:

In essence, we can partially answer this question by saying they will
fall out of radio contact when they are 2 miles apart, which leads us to
ask a new question:

                                               
“How long will it take them to be 2 miles 
apart?”

In this problem, our changing quantities are time and position, but
ultimately we need to know how long will it take for them to be 2
miles apart. We can see that time will be our input variable, so we’ll
define our input and output variables.

Input: t, time in hours.
Output:A(t), distance in miles, andE(t), distance in miles

Because it is not obvious how to define our output variable, we’ll start
by drawing a picture such as [link].



Initial Value: They both start at the same intersection so when t = 0,
the distance traveled by each person should also be 0. Thus the initial
value for each is 0.

Rate of Change: Anna is walking 4 miles per hour and Emanuel is
walking 3 miles per hour, which are both rates of change. The slope
for A is 4 and the slope for E is 3.

Using those values, we can write formulas for the distance each
person has walked.
Equation:

For this problem, the distances from the starting point are important.
To notate these, we can define a coordinate system, identifying the
“starting point” at the intersection where they both started. Then we
can use the variable, A, which we introduced above, to represent
Anna’s position, and define it to be a measurement from the starting

A(t) = 4t

E(t) = 3t



point in the eastward direction. Likewise, can use the variable, E, to
represent Emanuel’s position, measured from the starting point in the
southward direction. Note that in defining the coordinate system, we
specified both the starting point of the measurement and the direction
of measure.

We can then define a third variable, D, to be the measurement of the
distance between Anna and Emanuel. Showing the variables on the
diagram is often helpful, as we can see from [link].

Recall that we need to know how long it takes forD, the distance
between them, to equal 2 miles. Notice that for any given input t, the
outputsA (t),E (t), andD (t) represent distances.

[link] shows us that we can use the Pythagorean Theorem because we
have drawn a right angle.

Using the Pythagorean Theorem, we get: 
Equation:



In this scenario we are considering only positive values of t, so our
distanceD (t) will always be positive. We can simplify this answer to
D(t) = 5t. This means that the distance between Anna and Emanuel
is also a linear function. Because D is a linear function, we can now
answer the question of when the distance between them will reach 2
miles. We will set the output D(t) = 2 and solve for t.
Equation:

They will fall out of radio contact in 0.4 hours, or 24 minutes.

Note:
Should I draw diagrams when given information based on a geometric
shape?
Yes. Sketch the figure and label the quantities and unknowns on the sketch.

Example:
Exercise:

D(t)2 = A(t)2 + E(t)2

= (4t)2 + (3t)2

= 16t2 + 9t2

= 25t2

 D(t) = ±√25t2 Solve for D(t) using the square root

= ±5|t|

D(t) = 2

    5t = 2

      t = 2
5 = 0.4



Problem:
Using a Diagram to Model Distance between Cities

There is a straight road leading from the town of Westborough to
Agritown 30 miles east and 10 miles north. Partway down this road, it
junctions with a second road, perpendicular to the first, leading to the
town of Eastborough. If the town of Eastborough is located 20 miles
directly east of the town of Westborough, how far is the road junction
from Westborough?

Solution:

It might help here to draw a picture of the situation. See [link]. It
would then be helpful to introduce a coordinate system. While we
could place the origin anywhere, placing it at Westborough seems
convenient. This puts Agritown at coordinates (30,  10), and
Eastborough at (20, 0).

Using this point along with the origin, we can find the slope of the
line from Westborough to Agritown:
Equation:

m =
10 − 0

30 − 0
=

1

3

The equation of the road from Westborough to Agritown would be
Equation:

W(x) =
1

3
x



From this, we can determine the perpendicular road to Eastborough
will have slopem =– 3. Because the town of Eastborough is at the
point (20, 0), we can find the equation:
Equation:

We can now find the coordinates of the junction of the roads by
finding the intersection of these lines. Setting them equal,
Equation:

The roads intersect at the point (18, 6). Using the distance formula,
we can now find the distance from Westborough to the junction. 
Equation:

E(x) = −3x + b

0 = −3(20) + b Substitute in (20, 0)

b = 60

E(x) = −3x + 60

  1
3
x = −3x + 60

10
3
x = 60

10x = 180

     x = 18 Substituting this back into W(x)

     y = W(18)

      = 1
3

(18)

       = 6

distance = √(x2 − x1)
2 + (y2 − y1)

2

               = √(18 − 0)2 + (6 − 0)2

              ≈ 18.974 miles



Analysis

One nice use of linear models is to take advantage of the fact that the
graphs of these functions are lines. This means real-world applications
discussing maps need linear functions to model the distances between
reference points.

Note:
Exercise:

Problem:

There is a straight road leading from the town of Timpson to Ashburn
60 miles east and 12 miles north. Partway down the road, it junctions
with a second road, perpendicular to the first, leading to the town of
Garrison. If the town of Garrison is located 22 miles directly east of
the town of Timpson, how far is the road junction from Timpson?

Solution:

21.15 miles

Building Systems of Linear Models

Real-world situations including two or more linear functions may be
modeled with a system of linear equations. Remember, when solving a
system of linear equations, we are looking for points the two lines have in
common. Typically, there are three types of answers possible, as shown in
[link].



Note:
Given a situation that represents a system of linear equations, write
the system of equations and identify the solution.

1. Identify the input and output of each linear model.
2. Identify the slope and y-intercept of each linear model.
3. Find the solution by setting the two linear functions equal to one

another and solving for x,or find the point of intersection on a graph.

Example:
Exercise:

Problem:
Building a System of Linear Models to Choose a Truck Rental
Company

Jamal is choosing between two truck-rental companies. The first,
Keep on Trucking, Inc., charges an up-front fee of $20, then 59 cents
a mile. The second, Move It Your Way, charges an up-front fee of
$16, then 63 cents a mile[footnote]. When will Keep on Trucking, Inc.
be the better choice for Jamal?



Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and
http://www.uhaul.com/

Solution:

The two important quantities in this problem are the cost and the
number of miles driven. Because we have two companies to consider,
we will define two functions.

Input d, distance driven in miles

Outputs

K(d) : cost, in dollars, for renting from Keep
on Trucking 
M (d) cost, in dollars, for renting from Move
It Your Way

Initial
Value Up-front fee: K (0) = 20 and M (0) = 16

Rate of
Change K(d) = $0.59/mile andP(d) = $0.63/mile

A linear function is of the form f(x) = mx + b. Using the rates of
change and initial charges, we can write the equations
Equation:

Using these equations, we can determine when Keep on Trucking,
Inc., will be the better choice. Because all we have to make that

K(d) = 0.59d + 20

M(d) = 0.63d + 16



decision from is the costs, we are looking for when Move It Your
Way, will cost less, or whenK(d) < M(d). The solution pathway
will lead us to find the equations for the two functions, find the
intersection, and then see where theK (d) function is smaller.

These graphs are sketched in [link], withK (d) in blue.

To find the intersection, we set the equations equal and solve:
Equation:

This tells us that the cost from the two companies will be the same if
100 miles are driven. Either by looking at the graph, or noting that 
K(d) is growing at a slower rate, we can conclude that Keep on
Trucking, Inc. will be the cheaper price when more than 100 miles are
driven, that is d > 100.

K(d) = M(d)

0.59d + 20 = 0.63d + 16

4 = 0.04d

100 = d

d = 100



Note:
Access this online resource for additional instruction and practice with
linear function models.

Interpreting a Linear Function

We can use the same problem strategies that we would use for any type
of function.
When modeling and solving a problem, identify the variables and look
for key values, including the slope and y-intercept. See [link].
Draw a diagram, where appropriate. See [link] and [link].
Check for reasonableness of the answer.
Linear models may be built by identifying or calculating the slope and
using the y-intercept.
The x-intercept may be found by setting y = 0, which is setting the
expressionmx + b equal to 0.
The point of intersection of a system of linear equations is the point
where the x- and y-values are the same. See [link].
A graph of the system may be used to identify the points where one
line falls below (or above) the other line.

Verbal

Exercise:

Problem:

Explain how to find the input variable in a word problem that uses a
linear function.

Solution:

Determine the independent variable. This is the variable upon which
the output depends.

http://openstaxcollege.org/l/interpretlinear


Exercise:

Problem:

Explain how to find the output variable in a word problem that uses a
linear function.

Exercise:

Problem:

Explain how to interpret the initial value in a word problem that uses a
linear function.

Solution:

To determine the initial value, find the output when the input is equal
to zero.

Exercise:

Problem:

Explain how to determine the slope in a word problem that uses a
linear function.

Algebraic

Exercise:

Problem:

Find the area of a parallelogram bounded by the y-axis, the line
x = 3, the line f(x) = 1 + 2x,and the line parallel to f(x) passing
through (2,  7).

Solution:

6 square units



Exercise:

Problem:

Find the area of a triangle bounded by the x-axis, the line
f(x) = 12– 1

3 x, and the line perpendicular to f(x) that passes
through the origin.

Exercise:

Problem:

Find the area of a triangle bounded by the y-axis, the line
f(x) = 9– 6

7 x, and the line perpendicular to f(x) that passes through
the origin.

Solution:

20.012 square units

Exercise:

Problem:

Find the area of a parallelogram bounded by the x-axis, the line
g(x) = 2, the line f(x) = 3x, and the line parallel to f(x) passing
through (6, 1).

For the following exercises, consider this scenario: A town’s population has
been decreasing at a constant rate. In 2010 the population was 5,900. By
2012 the population had dropped 4,700. Assume this trend continues.
Exercise:

Problem:Predict the population in 2016.

Solution:

2,300

Exercise:



Problem: Identify the year in which the population will reach 0.

For the following exercises, consider this scenario: A town’s population has
been increased at a constant rate. In 2010 the population was 46,020. By
2012 the population had increased to 52,070. Assume this trend continues.
Exercise:

Problem:Predict the population in 2016.

Solution:

64,170

Exercise:

Problem: Identify the year in which the population will reach 75,000.

For the following exercises, consider this scenario: A town has an initial
population of 75,000. It grows at a constant rate of 2,500 per year for 5
years.
Exercise:

Problem:

Find the linear function that models the town’s populationP as a
function of the year, t, where t is the number of years since the model
began.

Solution:

P (t) = 75, 000 + 2,500t

Exercise:

Problem:Find a reasonable domain and range for the functionP .

Exercise:



Problem:

If the functionP is graphed, find and interpret the x- and y-intercepts.

Solution:

(–30, 0) Thirty years before the start of this model, the town had no
citizens. (0, 75,000) Initially, the town had a population of 75,000.

Exercise:

Problem:

If the functionP is graphed, find and interpret the slope of the
function.

Exercise:

Problem:When will the output reached 100,000?

Solution:

Ten years after the model began.

Exercise:

Problem:

What is the output in the year 12 years from the onset of the model?

For the following exercises, consider this scenario: The weight of a
newborn is 7.5 pounds. The baby gained one-half pound a month for its first
year.
Exercise:

Problem:

Find the linear function that models the baby’s weightW as a function
of the age of the baby, in months, t.



Solution:

W (t) = 0.5t + 7. 5

Exercise:

Problem:Find a reasonable domain and range for the function W .

Exercise:

Problem:

If the function W  is graphed, find and interpret the x- and y-intercepts.

Solution:

(−15, 0): The x-intercept is not a plausible set of data for this model
because it means the baby weighed 0 pounds 15 months prior to birth.
(0,  7. 5): The baby weighed 7.5 pounds at birth.

Exercise:

Problem:

If the function W is graphed, find and interpret the slope of the
function.

Exercise:

Problem:When did the baby weight 10.4 pounds?

Solution:

At age 5.8 months.

Exercise:

Problem:

What is the output when the input is 6.2? Interpret your answer.



For the following exercises, consider this scenario: The number of people
afflicted with the common cold in the winter months steadily decreased by
205 each year from 2005 until 2010. In 2005, 12,025 people were afflicted.
Exercise:

Problem:

Find the linear function that models the number of people inflicted
with the common coldC as a function of the year, t.

Solution:

C (t) = 12, 025 − 205t

Exercise:

Problem:Find a reasonable domain and range for the function C.

Exercise:

Problem:

If the functionC is graphed, find and interpret the x- and y-intercepts.

Solution:

(58.7, 0): In roughly 59 years, the number of people inflicted with the
common cold would be 0.(0,12,025): Initially there were 12,025
people afflicted by the common cold.

Exercise:

Problem:

If the functionC is graphed, find and interpret the slope of the
function.

Exercise:

Problem:When will the output reach 0?



Solution:

2064

Exercise:

Problem:In what year will the number of people be 9,700?

Graphical

For the following exercises, use the graph in [link], which shows the profit,
y, in thousands of dollars, of a company in a given year, t, where t
represents the number of years since 1980.

Exercise:

Problem:

Find the linear function y, where y depends on t, the number of years
since 1980.

Solution:



y = −2t+180

Exercise:

Problem:Find and interpret the y-intercept.

Exercise:

Problem:Find and interpret the x-intercept.

Solution:

In 2070, the company’s profit will be zero.

Exercise:

Problem:Find and interpret the slope.

For the following exercises, use the graph in [link], which shows the profit,
y, in thousands of dollars, of a company in a given year, t, where t
represents the number of years since 1980.

Exercise:



Problem:

Find the linear function y, where y depends on t, the number of years
since 1980.

Solution:

y = 30t − 300

Exercise:

Problem:Find and interpret the y-intercept.

Exercise:

Problem:Find and interpret the x-intercept.

Solution:

(10, 0) In 1990, the profit earned zero profit.

Exercise:

Problem:Find and interpret the slope.

Numeric

For the following exercises, use the median home values in Mississippi and
Hawaii (adjusted for inflation) shown in [link]. Assume that the house
values are changing linearly.



Year Mississippi HawaiiYear Mississippi Hawaii

1950 $25,200 $74,400

2000 $71,400 $272,700

Exercise:

Problem:In which state have home values increased at a higher rate?

Solution:

Hawaii

Exercise:

Problem:

If these trends were to continue, what would be the median home value
in Mississippi in 2010?

Exercise:

Problem:

If we assume the linear trend existed before 1950 and continues after
2000, the two states’ median house values will be (or were) equal in
what year? (The answer might be absurd.)

Solution:

During the year 1933

For the following exercises, use the median home values in Indiana and
Alabama (adjusted for inflation) shown in [link]. Assume that the house
values are changing linearly.



Year Indiana Alabama

1950 $37,700 $27,100

2000 $94,300 $85,100

Exercise:

Problem:In which state have home values increased at a higher rate?

Exercise:

Problem:

If these trends were to continue, what would be the median home value
in Indiana in 2010?

Solution:

$105,620

Exercise:

Problem:

If we assume the linear trend existed before 1950 and continues after
2000, the two states’ median house values will be (or were) equal in
what year? (The answer might be absurd.)

Real-World Applications

Exercise:

Problem: 

In 2004, a school population was 1,001. By 2008 the population had
grown to 1,697. Assume the population is changing linearly.



a. How much did the population grow between the year 2004 and
2008?

b. How long did it take the population to grow from 1,001 students
to 1,697 students?

c. What is the average population growth per year?
d. What was the population in the year 2000?
e. Find an equation for the population, P , of the school t years after

2000.
f. Using your equation, predict the population of the school in 2011.

Solution:

696 people 4 years 174 people per year 305 people
P(t) = 305 + 174t 2,219 people

Exercise:

Problem: 

In 2003, a town’s population was 1,431. By 2007 the population had
grown to 2,134. Assume the population is changing linearly.

a. How much did the population grow between the year 2003 and
2007?

b. How long did it take the population to grow from 1,431 people to
2,134 people?

c. What is the average population growth per year?
d. What was the population in the year 2000?
e. Find an equation for the population, P  of the town t years after

2000.
f. Using your equation, predict the population of the town in 2014.

Exercise:



Problem: 

A phone company has a monthly cellular plan where a customer pays a
flat monthly fee and then a certain amount of money per minute used
on the phone. If a customer uses 410 minutes, the monthly cost will be
$71.50. If the customer uses 720 minutes, the monthly cost will be
$118.

a. Find a linear equation for the monthly cost of the cell plan as a
function of x, the number of monthly minutes used.

b. Interpret the slope and y-intercept of the equation.
c. Use your equation to find the total monthly cost if 687 minutes

are used.

Solution:

C (x) = 0.15x + 10 The flat monthly fee is $10 and there is an
additional $0.15 fee for each additional minute used $113.05

Exercise:

Problem: 

A phone company has a monthly cellular data plan where a customer
pays a flat monthly fee of $10 and then a certain amount of money per
megabyte (MB) of data used on the phone. If a customer uses 20 MB,
the monthly cost will be $11.20. If the customer uses 130 MB, the
monthly cost will be $17.80.

a. Find a linear equation for the monthly cost of the data plan as a
function of x, the number of MB used.

b. Interpret the slope and y-intercept of the equation.
c. Use your equation to find the total monthly cost if 250 MB are

used.

Exercise:



Problem: 

In 1991, the moose population in a park was measured to be 4,360. By
1999, the population was measured again to be 5,880. Assume the
population continues to change linearly.

a. Find a formula for the moose population, P since 1990.
b. What does your model predict the moose population to be in

2003?

Solution:

P (t) = 190t + 4360 6,640 moose

Exercise:

Problem: 

In 2003, the owl population in a park was measured to be 340. By
2007, the population was measured again to be 285. The population
changes linearly. Let the input be years since 1990.

a. Find a formula for the owl population, P. Let the input be years
since 2003.

b. What does your model predict the owl population to be in 2012?

Exercise:

Problem: 

The Federal Helium Reserve held about 16 billion cubic feet of helium
in 2010 and is being depleted by about 2.1 billion cubic feet each year.

a. Give a linear equation for the remaining federal helium reserves, 
R, in terms of t, the number of years since 2010.

b. In 2015, what will the helium reserves be?
c. If the rate of depletion doesn’t change, in what year will the

Federal Helium Reserve be depleted?



Solution:

R (t) = 16 − 2.1t 5.5 billion cubic feet During the year 2017

Exercise:

Problem: 

Suppose the world’s oil reserves in 2014 are 1,820 billion barrels. If,
on average, the total reserves are decreasing by 25 billion barrels of oil
each year:

a. Give a linear equation for the remaining oil reserves, R, in terms
of t, the number of years since now.

b. Seven years from now, what will the oil reserves be?
c. If the rate at which the reserves are decreasing is constant, when

will the world’s oil reserves be depleted?

Exercise:

Problem:

You are choosing between two different prepaid cell phone plans. The
first plan charges a rate of 26 cents per minute. The second plan
charges a monthly fee of $19.95 plus 11 cents per minute. How many
minutes would you have to use in a month in order for the second plan
to be preferable?

Solution:

More than 133 minutes

Exercise:



Problem:

You are choosing between two different window washing companies.
The first charges $5 per window. The second charges a base fee of $40
plus $3 per window. How many windows would you need to have for
the second company to be preferable?

Exercise:

Problem: 

When hired at a new job selling jewelry, you are given two pay
options:

Option A: Base salary of $17,000 a year with a commission of
12% of your sales
Option B: Base salary of $20,000 a year with a commission of 5%
of your sales

How much jewelry would you need to sell for option A to produce a
larger income?

Solution:

More than $42,857.14 worth of jewelry

Exercise:

Problem: 

When hired at a new job selling electronics, you are given two pay
options:

Option A: Base salary of $14,000 a year with a commission of
10% of your sales
Option B: Base salary of $19,000 a year with a commission of 4%
of your sales

How much electronics would you need to sell for option A to produce
a larger income?



Exercise:

Problem: 

When hired at a new job selling electronics, you are given two pay
options:

Option A: Base salary of $20,000 a year with a commission of
12% of your sales
Option B: Base salary of $26,000 a year with a commission of 3%
of your sales

How much electronics would you need to sell for option A to produce
a larger income?

Solution:

$66,666.67

Exercise:

Problem: 

When hired at a new job selling electronics, you are given two pay
options:

Option A: Base salary of $10,000 a year with a commission of
9% of your sales
Option B: Base salary of $20,000 a year with a commission of 4%
of your sales

How much electronics would you need to sell for option A to produce
a larger income?



Complex Numbers
In this section, you will:

Express square roots of negative numbers as multiples of  i.
Plot complex numbers on the complex plane.
Add and subtract complex numbers.
Multiply and divide complex numbers.

The study of mathematics continuously builds upon itself. Negative integers, for
example, fill a void left by the set of positive integers. The set of rational numbers, in
turn, fills a void left by the set of integers. The set of real numbers fills a void left by the
set of rational numbers. Not surprisingly, the set of real numbers has voids as well. For
example, we still have no solution to equations such as
Equation:

x2 + 4 = 0

Our best guesses might be +2 or –2. But if we test +2 in this equation, it does not work.
If we test –2, it does not work. If we want to have a solution for this equation, we will
have to go farther than we have so far. After all, to this point we have described the
square root of a negative number as undefined. Fortunately, there is another system of
numbers that provides solutions to problems such as these. In this section, we will
explore this number system and how to work within it.

Expressing Square Roots of Negative Numbers as Multiples of i

We know how to find the square root of any positive real number. In a similar way, we
can find the square root of a negative number. The difference is that the root is not real.
If the value in the radicand is negative, the root is said to be an imaginary number. The
imaginary number i is defined as the square root of negative 1.
Equation:

√−1 = i

So, using properties of radicals,
Equation:

i2 = (√−1)
2

= −1

We can write the square root of any negative number as a multiple of i. Consider the
square root of –25.



Equation:

We use 5i and not − 5i  because the principal root of 25 is the positive root.

A complex number is the sum of a real number and an imaginary number. A complex
number is expressed in standard form when written a + biwhere a is the real part and bi
is the imaginary part. For example, 5 + 2i is a complex number. So, too, is 3 + 4√3i.

Imaginary numbers are distinguished from real numbers because a squared imaginary
number produces a negative real number. Recall, when a positive real number is squared,
the result is a positive real number and when a negative real number is squared, again,
the result is a positive real number. Complex numbers are a combination of real and
imaginary numbers.

Note:
Imaginary and Complex Numbers
A complex number is a number of the form a + biwhere

a is the real part of the complex number.
bi is the imaginary part of the complex number.

If b = 0, then a + bi is a real number. If a = 0 and b is not equal to 0, the complex
number is called an imaginary number. An imaginary number is an even root of a
negative number.

Note:
Given an imaginary number, express it in standard form.

1. Write √−a as √a√−1.

          = √25√−1

          = 5i

√−25 = √25 ⋅ (−1)



2. Express √−1 as i.
3. Write √a ⋅ i in simplest form.

Example:
Exercise:

Problem:
Expressing an Imaginary Number in Standard Form

Express √−9 in standard form.

Solution:

√−9 = √9√−1 = 3i

In standard form, this is 0 + 3i.

Note:
Exercise:

Problem:Express √−24 in standard form.

Solution:

√−24 = 0 + 2i√6

Plotting a Complex Number on the Complex Plane

We cannot plot complex numbers on a number line as we might real numbers. However,
we can still represent them graphically. To represent a complex number we need to
address the two components of the number. We use the complex plane, which is a
coordinate system in which the horizontal axis represents the real component and the
vertical axis represents the imaginary component. Complex numbers are the points on
the plane, expressed as ordered pairs (a, b), where a represents the coordinate for the
horizontal axis and b represents the coordinate for the vertical axis.



Let’s consider the number−2 + 3i. The real part of the complex number is−2 and the
imaginary part is 3i. We plot the ordered pair (−2, 3) to represent the complex number
−2 + 3i as shown in [link].

Note:
Complex Plane
In the complex plane, the horizontal axis is the real axis, and the vertical axis is the
imaginary axis as shown in [link].



Note:
Given a complex number, represent its components on the complex plane.

1. Determine the real part and the imaginary part of the complex number.
2. Move along the horizontal axis to show the real part of the number.
3. Move parallel to the vertical axis to show the imaginary part of the number.
4. Plot the point.

Example:
Exercise:

Problem:
Plotting a Complex Number on the Complex Plane

Plot the complex number 3 − 4i on the complex plane.

Solution:

The real part of the complex number is 3, and the imaginary part is −4i. We plot
the ordered pair (3, −4) as shown in [link].



Note:
Exercise:

Problem:Plot the complex number −4 − i on the complex plane.

Solution:



Adding and Subtracting Complex Numbers

Just as with real numbers, we can perform arithmetic operations on complex numbers. To
add or subtract complex numbers, we combine the real parts and combine the imaginary
parts.

Note:
Complex Numbers: Addition and Subtraction
Adding complex numbers:
Equation:

(a + bi) + (c + di) = (a + c) + (b + d)i

Subtracting complex numbers:
Equation:

(a + bi) − (c + di) = (a − c) + (b − d)i



Note:
Given two complex numbers, find the sum or difference.

1. Identify the real and imaginary parts of each number.
2. Add or subtract the real parts.
3. Add or subtract the imaginary parts.

Example:
Exercise:

Problem:
Adding Complex Numbers

Add 3 − 4i and 2 + 5i.

Solution:

We add the real parts and add the imaginary parts.
Equation:

Note:
Exercise:

Problem:Subtract 2 + 5i from 3– 4i.

Solution:

(3 − 4i) − (2 + 5i) = 1 − 9i

Multiplying Complex Numbers

(a + bi) + (c + di) = (a + c) + (b + d)i

(3 − 4i) + (2 + 5i) = (3 + 2) + (−4 + 5)i

                              = 5 + i



Multiplying complex numbers is much like multiplying binomials. The major difference
is that we work with the real and imaginary parts separately.

Multiplying a Complex Numbers by a Real Number

Let’s begin by multiplying a complex number by a real number. We distribute the real
number just as we would with a binomial. So, for example,

Note:
Given a complex number and a real number, multiply to find the product.

1. Use the distributive property.
2. Simplify.

Example:
Exercise:

Problem:
Multiplying a Complex Number by a Real Number

Find the product 4(2 + 5i).

Solution:

Distribute the 4.
Equation:

4(2 + 5i) = (4 ⋅ 2) + (4 ⋅ 5i)

= 8 + 20i



Note:
Exercise:

Problem:Find the product − 4(2 + 6i).

Solution:

−8 − 24i

Multiplying Complex Numbers Together

Now, let’s multiply two complex numbers. We can use either the distributive property or
the FOIL method. Recall that FOIL is an acronym for multiplying First, Outer, Inner, and
Last terms together. Using either the distributive property or the FOIL method, we get
Equation:

(a + bi) (c + di) = ac + adi + bci + bdi2

Because i2 = −1, we have
Equation:

(a + bi) (c + di) = ac + adi + bci − bd

To simplify, we combine the real parts, and we combine the imaginary parts.
Equation:

(a + bi) (c + di) = (ac − bd) + (ad + bc)i

Note:
Given two complex numbers, multiply to find the product.

1. Use the distributive property or the FOIL method.
2. Simplify.

Example:



Exercise:

Problem:
Multiplying a Complex Number by a Complex Number

Multiply (4 + 3i)(2 − 5i).

Solution:

Use (a + bi)(c + di) = (ac − bd) + (ad + bc)i
Equation:

Note:
Exercise:

Problem:Multiply (3 − 4i)(2 + 3i).

Solution:

18 + i

Dividing Complex Numbers

Division of two complex numbers is more complicated than addition, subtraction, and
multiplication because we cannot divide by an imaginary number, meaning that any
fraction must have a real-number denominator. We need to find a term by which we can
multiply the numerator and the denominator that will eliminate the imaginary portion of
the denominator so that we end up with a real number as the denominator. This term is
called the complex conjugate of the denominator, which is found by changing the sign
of the imaginary part of the complex number. In other words, the complex conjugate of
a + bi is a − bi.

Note that complex conjugates have a reciprocal relationship: The complex conjugate of
a + bi is a − bi, and the complex conjugate of a − bi is a + bi. Further, when a

(4 + 3i)(2 − 5i) = (4 ⋅ 2 − 3 ⋅ (−5)) + (4 ⋅ (−5) + 3 ⋅ 2)i

                         = (8 + 15) + (−20 + 6)i

                         = 23 − 14i



quadratic equation with real coefficients has complex solutions, the solutions are always
complex conjugates of one another.

Suppose we want to divide c + di by a + bi, where neither a nor b equals zero. We first
write the division as a fraction, then find the complex conjugate of the denominator, and
multiply.
Equation:

c + di

a + bi
 where a ≠ 0 and b ≠ 0

Multiply the numerator and denominator by the complex conjugate of the denominator.
Equation:

(c + di)

(a + bi)
⋅

(a − bi)

(a − bi)
=

(c + di) (a − bi)

(a + bi) (a − bi)

Apply the distributive property.
Equation:

=
ca − cbi + adi − bdi2

a2 − abi + abi − b2i2

Simplify, remembering that i2 = −1.
Equation:

Note:
The Complex Conjugate
The complex conjugate of a complex number a + bi is a − bi. It is found by changing
the sign of the imaginary part of the complex number. The real part of the number is left
unchanged.

When a complex number is multiplied by its complex conjugate, the result is a real
number.

=
ca−cbi+adi−bd(−1)
a2−abi+abi−b2(−1)

=
(ca+bd)+(ad−cb)i

a2+b2



When a complex number is added to its complex conjugate, the result is a real
number.

Example:
Exercise:

Problem:
Finding Complex Conjugates

Find the complex conjugate of each number.

a. 2 + i√5
b. − 1

2 i

Solution:

a. The number is already in the form a + bi. The complex conjugate is a − bi,
or 2 − i√5.

b. We can rewrite this number in the form a + bi as 0 − 1
2
i. The complex

conjugate is a − bi, or 0 + 1
2 i. This can be written simply as 1

2 i.

Analysis

Although we have seen that we can find the complex conjugate of an imaginary number,
in practice we generally find the complex conjugates of only complex numbers with
both a real and an imaginary component. To obtain a real number from an imaginary
number, we can simply multiply by i.

Note:
Given two complex numbers, divide one by the other.

1. Write the division problem as a fraction.
2. Determine the complex conjugate of the denominator.
3. Multiply the numerator and denominator of the fraction by the complex conjugate

of the denominator.
4. Simplify.



Example:
Exercise:

Problem:
Dividing Complex Numbers

Divide (2 + 5i) by (4 − i).

Solution:

We begin by writing the problem as a fraction.
Equation:

(2 + 5i)

(4 − i)

Then we multiply the numerator and denominator by the complex conjugate of the
denominator.
Equation:

(2 + 5i)

(4 − i)
⋅

(4 + i)

(4 + i)

To multiply two complex numbers, we expand the product as we would with
polynomials (the process commonly called FOIL).
Equation:

Note that this expresses the quotient in standard form.

Example:
Exercise:

Problem:

(2+5i)
(4−i)

⋅
(4+i)
(4+i)

= 8+2i+20i+5i2

16+4i−4i−i2

                            =
8+2i+20i+5(−1)
16+4i−4i−(−1)

Because  i2 = −1

                            = 3+22i
17

                            = 3
17 + 22

17 i Separate real and imaginary parts.



Substituting a Complex Number into a Polynomial Function

Let f(x) = x2 − 5x + 2. Evaluate f (3 + i).

Solution:

Substitutex = 3 + i into the function f(x) = x2 − 5x + 2 and simplify.

Analysis

We write f(3 + i) = −5 + i. Notice that the input is 3 + i and the output is −5 + i.

Note:
Exercise:

Problem:Let f(x) = 2x2 − 3x. Evaluate f (8 − i).

Solution:

102 − 29i

Example:
Exercise:

Problem:
Substituting an Imaginary Number in a Rational Function

Let f (x) = 2+x
x+3 . Evaluate f (10i).

Solution:

Substitutex = 10i and simplify.
Equation:



Note:
Exercise:

Problem:Let f(x) = x+1
x−4

. Evaluate f (−i).

Solution:

− 3
17

+ 5i
17

Simplifying Powers of i

The powers of i are cyclic. Let’s look at what happens when we raise i to increasing
powers.
Equation:

2+10i
10i+3 Substitute 10i for x.
2+10i
3+10i Rewrite the denominator in standard form.
2+10i
3+10i ⋅ 3–10i

3–10i Prepare to multiply the numerator and

denominator by the complex conjugate

of the denominator.
6–20i+30i–100i2

9–30i+30i–100i2
Multiply using the distributive property or the FOIL method.

6–20i+30i–100(–1)
9–30i+30i–100(–1)

Substitute –1 for i2.

106+10i
109 Simplify.

106
109 + 10

109 i Separate the real and imaginary parts.

i1 = i

i2 = −1

i3 = i2 ⋅ i = −1 ⋅ i = −i

i4 = i3 ⋅ i = −i ⋅ i = −i2 = −(−1) = 1

i5 = i4 ⋅ i = 1 ⋅ i = i



We can see that when we get to the fifth power of i, it is equal to the first power. As we
continue to multiply i by itself for increasing powers, we will see a cycle of 4. Let’s
examine the next 4 powers of i.
Equation:

Example:
Exercise:

Problem:
Simplifying Powers of i

Evaluate i35.

Solution:

Since i4 = 1, we can simplify the problem by factoring out as many factors of i4 as
possible. To do so, first determine how many times 4 goes into 35: 35 = 4 ⋅ 8 + 3.
Equation:

i35 = i4⋅8+3 = i4⋅8 ⋅ i3 = (i4)
8

⋅ i3 = 18 ⋅ i3 = i3 = −i

Note:
Can we write i35 in other helpful ways?
As we saw in [link], we reduced i35 to i3 by dividing the exponent by 4 and using the
remainder to find the simplified form. But perhaps another factorization of i35 may be
more useful. [link] shows some other possible factorizations.

i6 = i5 ⋅ i = i ⋅ i = i2 = −1

i7 = i6 ⋅ i = i2 ⋅ i = i3 = −i

i8 = i7 ⋅ i = i3 ⋅ i = i4 = 1

i9 = i8 ⋅ i = i4 ⋅ i = i5 = i



Factorization of i35 i34 ⋅ i i33 ⋅ i2 i31 ⋅ i4 i19 ⋅ i16

Reduced form (i2)
17

⋅ i i33 ⋅ (−1) i31 ⋅ 1 i19 ⋅ (i4)
4

Simplified form (−1)17 ⋅ i −i33 i31 i19

Each of these will eventually result in the answer we obtained above but may require
several more steps than our earlier method.

Note:
Access these online resources for additional instruction and practice with complex
numbers.

Adding and Subtracting Complex Numbers
Multiply Complex Numbers
Multiplying Complex Conjugates
Raising i to Powers

Key Concepts

The square root of any negative number can be written as a multiple of i. See [link].
To plot a complex number, we use two number lines, crossed to form the complex
plane. The horizontal axis is the real axis, and the vertical axis is the imaginary axis.
See [link].
Complex numbers can be added and subtracted by combining the real parts and
combining the imaginary parts. See [link].
Complex numbers can be multiplied and divided.
To multiply complex numbers, distribute just as with polynomials. See [link], [link],
and [link].
To divide complex numbers, multiply both the numerator and denominator by the
complex conjugate of the denominator to eliminate the complex number from the
denominator. See [link], [link], and [link].
The powers of i are cyclic, repeating every fourth one. See [link].

Verbal

Exercise:

http://openstaxcollege.org/l/addsubcomplex
http://openstaxcollege.org/l/multiplycomplex
http://openstaxcollege.org/l/multcompconj
http://openstaxcollege.org/l/raisingi


Problem:Explain how to add complex numbers.

Solution:

Add the real parts together and the imaginary parts together.

Exercise:

Problem:What is the basic principle in multiplication of complex numbers?

Exercise:

Problem:

Give an example to show the product of two imaginary numbers is not always
imaginary.

Solution:

i times i equals –1, which is not imaginary. (answers vary)

Exercise:

Problem:What is a characteristic of the plot of a real number in the complex plane?

Algebraic

For the following exercises, evaluate the algebraic expressions.
Exercise:

Problem:If f(x) = x2 + x − 4, evaluate f(2i).

Solution:

−8 + 2i

Exercise:

Problem:If f(x) = x3 − 2, evaluate f(i).

Exercise:



Problem:If f(x) = x2 + 3x + 5,evaluate f(2 + i).

Solution:

14 + 7i

Exercise:

Problem:If f(x) = 2x2 + x − 3, evaluate f(2 − 3i).

Exercise:

Problem:If f(x) = x+1
2−x

, evaluate f(5i).

Solution:

− 23
29 + 15

29 i

Exercise:

Problem:If f(x) = 1+2x
x+3 , evaluate f(4i).

Graphical

For the following exercises, determine the number of real and nonreal solutions for each
quadratic function shown.
Exercise:

Problem:



Solution:

2 real and 0 nonreal

Exercise:

Problem:

For the following exercises, plot the complex numbers on the complex plane.
Exercise:

Problem:1 − 2i

Solution:



Exercise:

Problem:−2 + 3i

Exercise:

Problem:i

Solution:



Exercise:

Problem:−3 − 4i

Numeric

For the following exercises, perform the indicated operation and express the result as a
simplified complex number.
Exercise:

Problem:(3 + 2i) + (5 − 3i)

Solution:

8 − i

Exercise:

Problem:(−2 − 4i) + (1 + 6i)

Exercise:

Problem:(−5 + 3i) − (6 − i)



Solution:

−11 + 4i

Exercise:

Problem:(2 − 3i) − (3 + 2i)

Exercise:

Problem:(−4 + 4i) − (−6 + 9i)

Solution:

2 − 5i

Exercise:

Problem:(2 + 3i)(4i)

Exercise:

Problem:(5 − 2i)(3i)

Solution:

6 + 15i

Exercise:

Problem:(6 − 2i)(5)

Exercise:

Problem:(−2 + 4i) (8)

Solution:

−16 + 32i

Exercise:

Problem:(2 + 3i)(4 − i)

Exercise:



Problem:(−1 + 2i)(−2 + 3i)

Solution:

−4 − 7i

Exercise:

Problem:(4 − 2i)(4 + 2i)

Exercise:

Problem:(3 + 4i) (3 − 4i)

Solution:

25

Exercise:

Problem: 3+4i
2

Exercise:

Problem: 6−2i
3

Solution:

2 − 2
3 i

Exercise:

Problem: −5+3i
2i

Exercise:

Problem: 6+4i
i

Solution:

4 − 6i

Exercise:



Problem: 2−3i
4+3i

Exercise:

Problem: 3+4i
2−i

Solution:

2
5

+ 11
5
i

Exercise:

Problem: 2+3i
2−3i

Exercise:

Problem:√−9 + 3√−16

Solution:

15i

Exercise:

Problem:−√−4 − 4√−25

Exercise:

Problem: 2+√−12
2

Solution:

1 + i√3

Exercise:

Problem: 4+√−20
2

Exercise:

Problem:i8



Solution:

1

Exercise:

Problem:i15

Exercise:

Problem:i22

Solution:

−1

Technology

For the following exercises, use a calculator to help answer the questions.
Exercise:

Problem:Evaluate (1 + i)k fork = 4, 8, and 12.Predict the value if k = 16.

Exercise:

Problem:Evaluate (1 − i)k fork = 2, 6, and 10.Predict the value if k = 14.

Solution:

128i

Exercise:

Problem:

Evaluate (1 + i)k − (1 − i)k for k = 4, 8, and 12. Predict the value for k = 16.

Exercise:

Problem:Show that a solution ofx6 + 1 = 0 is √3
2

+ 1
2
i.

Solution:



( √3
2 + 1

2 i)
6

= −1

Exercise:

Problem:Show that a solution ofx8 − 1 = 0 is √2
2 +

√2
2 i.

Extensions

For the following exercises, evaluate the expressions, writing the result as a simplified
complex number.
Exercise:

Problem: 1
i

+ 4
i3

Solution:

3i

Exercise:

Problem: 1
i11 − 1

i21

Exercise:

Problem:i7 (1 + i2)

Solution:

0

Exercise:

Problem:i−3 + 5i7

Exercise:

Problem: (2+i)(4−2i)
(1+i)

Solution:



5 – 5i

Exercise:

Problem: (1+3i)(2−4i)
(1+2i)

Exercise:

Problem: (3+i)2

(1+2i)2

Solution:

−2i

Exercise:

Problem: 3+2i
2+i

+ (4 + 3i)

Exercise:

Problem: 4+i
i

+ 3−4i
1−i

Solution:

9
2 − 9

2 i

Exercise:

Problem: 3+2i
1+2i − 2−3i

3+i

Glossary

complex conjugate
the complex number in which the sign of the imaginary part is changed and the real
part of the number is left unchanged; when added to or multiplied by the original
complex number, the result is a real number

complex number
the sum of a real number and an imaginary number, written in the standard form

a + bi,



where a is the real part, and bi is the imaginary part

complex plane
a coordinate system in which the horizontal axis is used to represent the real part of
a complex number and the vertical axis is used to represent the imaginary part of a
complex number

imaginary number
a number in the form biwhere i = √−1



Quadratic Functions
In this section, you will:

Recognize characteristics of parabolas.
Understand how the graph of a parabola is related to its quadratic function.
Determine a quadratic function’s minimum or maximum value.
Solve problems involving a quadratic function’s minimum or maximum
value.

Curved antennas, such as the ones shown in [link], are commonly used to focus
microwaves and radio waves to transmit television and telephone signals, as well
as satellite and spacecraft communication. The cross-section of the antenna is in
the shape of a parabola, which can be described by a quadratic function.

In this section, we will investigate quadratic functions, which frequently model
problems involving area and projectile motion. Working with quadratic functions
can be less complex than working with higher degree functions, so they provide a
good opportunity for a detailed study of function behavior.

Recognizing Characteristics of Parabolas

An array of satellite dishes. (credit: Matthew Colvin de Valle, Flickr)



The graph of a quadratic function is a U-shaped curve called a parabola. One
important feature of the graph is that it has an extreme point, called the vertex. If
the parabola opens up, the vertex represents the lowest point on the graph, or the
minimum value of the quadratic function. If the parabola opens down, the vertex
represents the highest point on the graph, or the maximum value. In either case, the
vertex is a turning point on the graph. The graph is also symmetric with a vertical
line drawn through the vertex, called the axis of symmetry. These features are
illustrated in [link].

The y-intercept is the point at which the parabola crosses the y-axis. The x-
intercepts are the points at which the parabola crosses the x-axis. If they exist, the
x-intercepts represent the zeros, or roots, of the quadratic function, the values of x
at which y = 0.

Example:



Exercise:

Problem:
Identifying the Characteristics of a Parabola

Determine the vertex, axis of symmetry, zeros, and y-intercept of the
parabola shown in [link].

Solution:

The vertex is the turning point of the graph. We can see that the vertex is at
(3, 1). Because this parabola opens upward, the axis of symmetry is the

vertical line that intersects the parabola at the vertex. So the axis of symmetry
is x = 3. This parabola does not cross the x-axis, so it has no zeros. It crosses
the y-axis at (0, 7) so this is the y-intercept.



Understanding How the Graphs of Parabolas are Related to Their
Quadratic Functions

The general form of a quadratic function presents the function in the form
Equation:

f(x) = ax2 + bx + c

where a, b, and c are real numbers and a ≠ 0. If a > 0, the parabola opens upward.
If a < 0, the parabola opens downward. We can use the general form of a parabola
to find the equation for the axis of symmetry.

The axis of symmetry is defined by x = − b
2a

. If we use the quadratic formula,

x = −b±√b2−4ac
2a

, to solve ax2 + bx + c = 0 for the x-intercepts, or zeros, we find
the value of x halfway between them is always x = − b

2a
, the equation for the axis

of symmetry.

[link] represents the graph of the quadratic function written in general form as
y = x2 + 4x + 3. In this form, a = 1, b = 4, and c = 3. Because a > 0, the
parabola opens upward. The axis of symmetry is x = − 4

2(1)
= −2. This also

makes sense because we can see from the graph that the vertical line x = −2
divides the graph in half. The vertex always occurs along the axis of symmetry. For
a parabola that opens upward, the vertex occurs at the lowest point on the graph, in
this instance, (−2, −1). The x-intercepts, those points where the parabola crosses
the x-axis, occur at (−3, 0) and (−1, 0).



The standard form of a quadratic function presents the function in the form
Equation:

f(x) = a(x − h)2 + k

where (h,  k) is the vertex. Because the vertex appears in the standard form of the
quadratic function, this form is also known as the vertex form of a quadratic
function.

As with the general form, if a > 0, the parabola opens upward and the vertex is a
minimum. If a < 0, the parabola opens downward, and the vertex is a maximum.
[link] represents the graph of the quadratic function written in standard form as
y = −3(x + 2)2 + 4. Since x– h = x + 2 in this example, h = –2. In this form,
a = −3, h = −2, and k = 4. Because a < 0, the parabola opens downward. The
vertex is at (−2,  4).



The standard form is useful for determining how the graph is transformed from the
graph of y = x2. [link] is the graph of this basic function.



If k > 0, the graph shifts upward, whereas if k < 0, the graph shifts downward. In
[link], k > 0, so the graph is shifted 4 units upward. If h > 0, the graph shifts
toward the right and if h < 0, the graph shifts to the left. In [link], h < 0, so the
graph is shifted 2 units to the left. The magnitude of a indicates the stretch of the
graph. If|a| > 1, the point associated with a particular x-value shifts farther from
the x-axis, so the graph appears to become narrower, and there is a vertical stretch.
But if |a| < 1, the point associated with a particular x-value shifts closer to the x-
axis, so the graph appears to become wider, but in fact there is a vertical
compression. In [link], |a| > 1, so the graph becomes narrower.

The standard form and the general form are equivalent methods of describing the
same function. We can see this by expanding out the general form and setting it
equal to the standard form.
Equation:

a(x − h)2 + k = ax2 + bx + c

ax2 − 2ahx + (ah2 + k) = ax2 + bx + c



For the linear terms to be equal, the coefficients must be equal.
Equation:

–2ah = b,  so h = −
b

2a
.

This is the axis of symmetry we defined earlier. Setting the constant terms equal:
Equation:

In practice, though, it is usually easier to remember that k is the output value of the
function when the input is h, so f(h) = k.

Note:
Forms of Quadratic Functions
A quadratic function is a function of degree two. The graph of a quadratic function
is a parabola. The general form of a quadratic function is f(x) = ax2 + bx + c

where a, b, and c are real numbers and a ≠ 0.
The standard form of a quadratic function is f(x) = a(x − h)2 + k.
The vertex (h, k) is located at
Equation:

h =–
b

2a
,  k = f(h) = f (

−b

2a
).

Note:
Given a graph of a quadratic function, write the equation of the function in
general form.

ah2 + k = c

          k = c − ah2

             = c − a(− b
2a
)2

             = c − b2

4a



1. Identify the horizontal shift of the parabola; this value is h. Identify the
vertical shift of the parabola; this value is k.

2. Substitute the values of the horizontal and vertical shift for h and k. in the
function f(x) = a(x– h)2 + k.

3. Substitute the values of any point, other than the vertex, on the graph of the
parabola for x and f(x).

4. Solve for the stretch factor, |a|.
5. If the parabola opens up, a > 0. If the parabola opens down, a < 0 since this

means the graph was reflected about the x-axis.
6. Expand and simplify to write in general form.

Example:
Exercise:

Problem:
Writing the Equation of a Quadratic Function from the Graph

Write an equation for the quadratic function g in [link] as a transformation of
f(x) = x2, and then expand the formula, and simplify terms to write the
equation in general form.



Solution:

We can see the graph of g is the graph of f(x) = x2 shifted to the left 2 and
down 3, giving a formula in the form g(x) = a(x + 2)2– 3.

Substituting the coordinates of a point on the curve, such as (0, −1), we can
solve for the stretch factor.
Equation:

In standard form, the algebraic model for this graph is g(x) = 1
2 (x + 2)2– 3.

To write this in general polynomial form, we can expand the formula and
simplify terms.
Equation:

−1 = a(0 + 2)2 − 3

   2 = 4a

   a = 1
2



Notice that the horizontal and vertical shifts of the basic graph of the
quadratic function determine the location of the vertex of the parabola; the
vertex is unaffected by stretches and compressions.

Analysis

We can check our work using the table feature on a graphing utility. First enter
Y1 = 1

2 (x + 2)2 − 3. Next, select TBLSET, then use TblStart =– 6 and
ΔTbl = 2, and select TABLE. See [link].

x –6 –4 –2 0 2

y 5 –1 –3 –1 5

The ordered pairs in the table correspond to points on the graph.

Note:
Exercise:

Problem:

A coordinate grid has been superimposed over the quadratic path of a
basketball in [link]. Find an equation for the path of the ball. Does the
shooter make the basket?

g(x) = 1
2 (x + 2)2 − 3

        = 1
2 (x + 2)(x + 2) − 3

        = 1
2 (x2 + 4x + 4) − 3

        = 1
2 x2 + 2x + 2 − 3

        = 1
2 x2 + 2x − 1



Solution:

The path passes through the origin and has vertex at (−4,  7), so
(h)x =– 7

16
(x + 4)2 + 7. To make the shot, h (−7.5) would need to be

about 4 but h(– 7.5) ≈ 1.64; he doesn’t make it.

Note:
Given a quadratic function in general form, find the vertex of the parabola.

1. Identify a,  b,  and c.
2. Find h, the x-coordinate of the vertex, by substituting a and b into h =– b

2a
.

3. Find k, the y-coordinate of the vertex, by evaluating k = f (h) = f (− b
2a
).

(credit: modification of work by Dan Meyer)



Example:
Exercise:

Problem:
Finding the Vertex of a Quadratic Function

Find the vertex of the quadratic function f(x) = 2x2– 6x + 7. Rewrite the
quadratic in standard form (vertex form).

Solution:

The horizontal coordinate of the vertex will be at
Equation:

The vertical coordinate of the vertex will be at
Equation:

Rewriting into standard form, the stretch factor will be the same as the a in
the original quadratic.
Equation:

Using the vertex to determine the shifts,
Equation:

h =– b
2a

   =– –6
2(2)

   = 6
4

   = 3
2

k = f(h)

   = f ( 3
2
)

   = 2( 3
2
)

2
− 6 ( 3

2
) + 7

   = 5
2

f(x) = ax2 + bx + c

f(x) = 2x2 − 6x + 7



f (x) = 2(x–
3

2
)

2

+
5

2

Analysis

One reason we may want to identify the vertex of the parabola is that this point
will inform us where the maximum or minimum value of the output occurs, (k ),
and where it occurs, (x).

Note:
Exercise:

Problem:

Given the equation g(x) = 13 + x2 − 6x, write the equation in general form
and then in standard form.

Solution:

g(x) = x2 − 6x + 13 in general form; g(x) = (x − 3)2 + 4 in standard
form

Finding the Domain and Range of a Quadratic Function

Any number can be the input value of a quadratic function. Therefore, the domain
of any quadratic function is all real numbers. Because parabolas have a maximum
or a minimum point, the range is restricted. Since the vertex of a parabola will be
either a maximum or a minimum, the range will consist of all y-values greater than
or equal to the y-coordinate at the turning point or less than or equal to the y-
coordinate at the turning point, depending on whether the parabola opens up or
down.

Note:
Domain and Range of a Quadratic Function
The domain of any quadratic function is all real numbers.



The range of a quadratic function written in general form f(x) = ax2 + bx + c

with a positive a value is f(x) ≥ f (− b
2a
), or [f (− b

2a
), ∞); the range of a

quadratic function written in general form with a negative a value is
f(x) ≤ f (− b

2a
), or (−∞, f (− b

2a
)].

The range of a quadratic function written in standard form f(x) = a(x − h)2 + k

with a positive a value is f(x) ≥ k; the range of a quadratic function written in
standard form with a negative a value is f(x) ≤ k.

Note:
Given a quadratic function, find the domain and range.

1. Identify the domain of any quadratic function as all real numbers.
2. Determine whether a is positive or negative. If a is positive, the parabola has

a minimum. If a is negative, the parabola has a maximum.
3. Determine the maximum or minimum value of the parabola, k.
4. If the parabola has a minimum, the range is given by f(x) ≥ k, or [k, ∞). If

the parabola has a maximum, the range is given by f(x) ≤ k, or (−∞, k].

Example:
Exercise:

Problem:
Finding the Domain and Range of a Quadratic Function

Find the domain and range of f(x) = −5x2 + 9x − 1.

Solution:

As with any quadratic function, the domain is all real numbers.

Because a is negative, the parabola opens downward and has a maximum
value. We need to determine the maximum value. We can begin by finding
the x-value of the vertex.
Equation:

b



The maximum value is given by f(h).
Equation:

The range is f(x) ≤ 61
20 , or (−∞, 61

20 ].

Note:
Exercise:

Problem:Find the domain and range of f(x) = 2(x − 4
7 )

2
+ 8

11 .

Solution:

The domain is all real numbers. The range is f(x) ≥ 8
11

, or [ 8
11

, ∞).

Determining the Maximum and Minimum Values of Quadratic
Functions

The output of the quadratic function at the vertex is the maximum or minimum
value of the function, depending on the orientation of the parabola. We can see the
maximum and minimum values in [link].

h = − b
2a

   = − 9
2(−5)

   = 9
10

f( 9
10

) = −5( 9
10

)
2

+ 9( 9
10

) − 1

           = 61
20



There are many real-world scenarios that involve finding the maximum or
minimum value of a quadratic function, such as applications involving area and



revenue.

Example:
Exercise:

Problem:
Finding the Maximum Value of a Quadratic Function

A backyard farmer wants to enclose a rectangular space for a new garden
within her fenced backyard. She has purchased 80 feet of wire fencing to
enclose three sides, and she will use a section of the backyard fence as the
fourth side.

a. Find a formula for the area enclosed by the fence if the sides of fencing
perpendicular to the existing fence have length L.

b. What dimensions should she make her garden to maximize the enclosed
area?

Solution:

Let’s use a diagram such as [link] to record the given information. It is also
helpful to introduce a temporary variable, W , to represent the width of the
garden and the length of the fence section parallel to the backyard fence.



a. We know we have only 80 feet of fence available, and
L + W + L = 80, or more simply, 2L + W = 80. This allows us to
represent the width, W , in terms of L.
Equation:

W = 80 − 2L

Now we are ready to write an equation for the area the fence encloses.
We know the area of a rectangle is length multiplied by width, so
Equation:

This formula represents the area of the fence in terms of the variable
length L. The function, written in general form, is
Equation:

A(L) = −2L2 + 80L.

b. The quadratic has a negative leading coefficient, so the graph will open
downward, and the vertex will be the maximum value for the area. In
finding the vertex, we must be careful because the equation is not
written in standard polynomial form with decreasing powers. This is
why we rewrote the function in general form above. Since a is the
coefficient of the squared term, a = −2, b = 80, and c = 0.

To find the vertex:
Equation:

The maximum value of the function is an area of 800 square feet, which
occurs when L = 20 feet. When the shorter sides are 20 feet, there is 40 feet
of fencing left for the longer side. To maximize the area, she should enclose

     A = LW = L(80 − 2L)

A(L) = 80L − 2L2

h = − 80
2(−2)

k = A(20)

   = 20 and    = 80(20) − 2(20)2

   = 800



the garden so the two shorter sides have length 20 feet and the longer side
parallel to the existing fence has length 40 feet.

Analysis

This problem also could be solved by graphing the quadratic function. We can see
where the maximum area occurs on a graph of the quadratic function in [link].

Note:
Given an application involving revenue, use a quadratic equation to find the
maximum.

1. Write a quadratic equation for revenue.
2. Find the vertex of the quadratic equation.
3. Determine the y-value of the vertex.



Example:
Exercise:

Problem:
Finding Maximum Revenue

The unit price of an item affects its supply and demand. That is, if the unit
price goes up, the demand for the item will usually decrease. For example, a
local newspaper currently has 84,000 subscribers at a quarterly charge of
$30. Market research has suggested that if the owners raise the price to $32,
they would lose 5,000 subscribers. Assuming that subscriptions are linearly
related to the price, what price should the newspaper charge for a quarterly
subscription to maximize their revenue?

Solution:

Revenue is the amount of money a company brings in. In this case, the
revenue can be found by multiplying the price per subscription times the
number of subscribers, or quantity. We can introduce variables, p for price per
subscription and Q for quantity, giving us the equation Revenue = pQ.

Because the number of subscribers changes with the price, we need to find a
relationship between the variables. We know that currently p = 30 and
Q = 84, 000. We also know that if the price rises to $32, the newspaper
would lose 5,000 subscribers, giving a second pair of values, p = 32 and
Q = 79, 000. From this we can find a linear equation relating the two
quantities. The slope will be
Equation:

This tells us the paper will lose 2,500 subscribers for each dollar they raise
the price. We can then solve for the y-intercept.
Equation:

m = 79,000−84,000
32−30

    = −5,000
2

    = −2, 500



This gives us the linear equation Q = −2,500p + 159, 000 relating cost and
subscribers. We now return to our revenue equation.
Equation:

We now have a quadratic function for revenue as a function of the
subscription charge. To find the price that will maximize revenue for the
newspaper, we can find the vertex.
Equation:

The model tells us that the maximum revenue will occur if the newspaper
charges $31.80 for a subscription. To find what the maximum revenue is, we
evaluate the revenue function.
Equation:

Analysis

This could also be solved by graphing the quadratic as in [link]. We can see the
maximum revenue on a graph of the quadratic function.

         Q = −2500p + b Substitute in the point Q = 84, 000 and p = 30

84, 000 = −2500(30) + b Solve for b

          b = 159, 000

Revenue = pQ

Revenue = p(−2, 500p + 159, 000)

Revenue = −2, 500p2 + 159, 000p

h = − 159,000
2(−2,500)

   = 31.8

maximum revenue = −2,500(31.8)2 + 159,000(31.8)

                               = 2,528,100



Finding the x- and y-Intercepts of a Quadratic Function

Much as we did in the application problems above, we also need to find intercepts
of quadratic equations for graphing parabolas. Recall that we find the y-intercept of
a quadratic by evaluating the function at an input of zero, and we find the x-
intercepts at locations where the output is zero. Notice in [link] that the number of
x-intercepts can vary depending upon the location of the graph.

Number of x-intercepts of a parabola



Note:
Given a quadratic function f (x), find the y- and x-intercepts.

1. Evaluate f (0) to find the y-intercept.
2. Solve the quadratic equation f (x) = 0 to find the x-intercepts.

Example:
Exercise:

Problem:
Finding the y- and x-Intercepts of a Parabola

Find the y- and x-intercepts of the quadratic f(x) = 3x2 + 5x − 2.

Solution:

We find the y-intercept by evaluating f (0).
Equation:

So the y-intercept is at (0, −2).

For the x-intercepts, we find all solutions of f (x) = 0.
Equation:

0 = 3x2 + 5x − 2

In this case, the quadratic can be factored easily, providing the simplest
method for solution.
Equation:

0 = (3x − 1)(x + 2)

Equation:

f(0) = 3(0)2 + 5(0) − 2

        = −2



So the x-intercepts are at ( 1
3 , 0) and (−2, 0).

Analysis

By graphing the function, we can confirm that the graph crosses the y-axis at
(0, −2). We can also confirm that the graph crosses the x-axis at ( 1

3 , 0) and
(−2, 0).See [link]

Rewriting Quadratics in Standard Form

In [link], the quadratic was easily solved by factoring. However, there are many
quadratics that cannot be factored. We can solve these quadratics by first rewriting
them in standard form.

Note:

0 = 3x − 1 0 = x + 2

x = 1
3 or x = −2



Given a quadratic function, find the x-intercepts by rewriting in standard
form.

1. Substitute a and b into h = − b
2a

.
2. Substitute x = h into the general form of the quadratic function to find k.
3. Rewrite the quadratic in standard form using h and k.
4. Solve for when the output of the function will be zero to find the x-intercepts.

Example:
Exercise:

Problem:
Finding the x-Intercepts of a Parabola

Find the x-intercepts of the quadratic function f(x) = 2x2 + 4x − 4.

Solution:

We begin by solving for when the output will be zero.
Equation:

0 = 2x2 + 4x − 4

Because the quadratic is not easily factorable in this case, we solve for the
intercepts by first rewriting the quadratic in standard form.
Equation:

f (x) = a(x − h)2 + k

We know that a = 2. Then we solve for h and k.
Equation:

h = − b
2a

k = f(−1)

   = − 4
2(2)

   = 2(−1)2 + 4(−1) − 4

   = −1    = −6



So now we can rewrite in standard form.
Equation:

f(x) = 2(x + 1)2 − 6

We can now solve for when the output will be zero.
Equation:

The graph has x-intercepts at (−1 − √3, 0) and (−1 + √3, 0).

Analysis

We can check our work by graphing the given function on a graphing utility and
observing the x-intercepts. See [link].

0 = 2(x + 1)2 − 6

6 = 2(x + 1)2

3 = (x + 1)2

x + 1 = ±√3

x = −1 ± √3



Note:
Exercise:

Problem:

In a separate Try It, we found the standard and general form for the function
g(x) = 13 + x2 − 6x. Now find the y- and x-intercepts (if any).

Solution:

y-intercept at (0, 13), No x-intercepts

Example:



Exercise:

Problem:
Solving a Quadratic Equation with the Quadratic Formula

Solve x2 + x + 2 = 0.

Solution:

Let’s begin by writing the quadratic formula: x = −b±√b2−4ac
2a

.

When applying the quadratic formula, we identify the coefficients
a,  b and c. For the equation x2 + x + 2 = 0, we have
a = 1,  b = 1,  and c = 2. Substituting these values into the formula we
have: 
 
Equation:

The solutions to the equation are x = −1+i√7
2 and x = −1−i√7

2 or
x = −1

2 + i√7
2 and x = −1

2 − i√7
2 .

Example:
Exercise:

Problem:
Applying the Vertex and x-Intercepts of a Parabola

x = −b±√b2−4ac
2a

   =
−1±√12−4⋅1⋅(2)

2⋅1

   = −1±√1−8
2

   = −1±√−7
2

   = −1±i√7
2



A ball is thrown upward from the top of a 40 foot high building at a speed of
80 feet per second. The ball’s height above ground can be modeled by the
equation H(t) = −16t2 + 80t + 40.

a. When does the ball reach the maximum height?
b. What is the maximum height of the ball?
c. When does the ball hit the ground?

Solution:

a. The ball reaches the maximum height at the vertex of the parabola.
Equation:

The ball reaches a maximum height after 2.5 seconds.
b. To find the maximum height, find the y-coordinate of the vertex of the

parabola.
Equation:

The ball reaches a maximum height of 140 feet.
c. To find when the ball hits the ground, we need to determine when the

height is zero, H (t) = 0.

We use the quadratic formula.
Equation:

   = 80
32

   = 5
2

   = 2.5

h = − 80
2(−16)

k = H (− b
2a
)

   = H (2.5)

   = −16(2.5)2 + 80 (2.5) + 40

   = 140



Because the square root does not simplify nicely, we can use a calculator
to approximate the values of the solutions.
Equation:

The second answer is outside the reasonable domain of our model, so
we conclude the ball will hit the ground after about 5.458 seconds. See
[link]

Note:
Exercise:

t =
−80±√802−4(−16)(40)

2(−16)

  = −80±√8960
−32

t = −80−√8960
−32 ≈ 5.458 or t = −80+√8960

−32 ≈ −0.458



Problem: 

A rock is thrown upward from the top of a 112-foot high cliff overlooking the
ocean at a speed of 96 feet per second. The rock’s height above ocean can be
modeled by the equation H(t) = −16t2 + 96t + 112.

a. When does the rock reach the maximum height?
b. What is the maximum height of the rock?
c. When does the rock hit the ocean?

Solution:

3 seconds 256 feet 7 seconds

Note:
Access these online resources for additional instruction and practice with
quadratic equations.

Graphing Quadratic Functions in General Form
Graphing Quadratic Functions in Standard Form
Quadratic Function Review
Characteristics of a Quadratic Function

Key Equations

general form of a quadratic function f(x) = ax2 + bx + c

the quadratic formula

http://openstaxcollege.org/l/graphquadgen
http://openstaxcollege.org/l/graphquadstan
http://openstaxcollege.org/l/quadfuncrev
http://openstaxcollege.org/l/characterquad


x =
−b ± √b2 − 4ac

2a

standard form of a quadratic function f(x) = a(x − h)2 + k

Key Concepts

A polynomial function of degree two is called a quadratic function.
The graph of a quadratic function is a parabola. A parabola is a U-shaped
curve that can open either up or down.
The axis of symmetry is the vertical line passing through the vertex. The
zeros, or x-intercepts, are the points at which the parabola crosses the x-axis.
The y-intercept is the point at which the parabola crosses the y-axis. See
[link], [link], and [link].
Quadratic functions are often written in general form. Standard or vertex form
is useful to easily identify the vertex of a parabola. Either form can be written
from a graph. See [link].
The vertex can be found from an equation representing a quadratic function.
See [link].
The domain of a quadratic function is all real numbers. The range varies with
the function. See [link].
A quadratic function’s minimum or maximum value is given by the y-value of
the vertex.
The minimum or maximum value of a quadratic function can be used to
determine the range of the function and to solve many kinds of real-world
problems, including problems involving area and revenue. See [link] and
[link].
Some quadratic equations must be solved by using the quadratic formula. See
[link].
The vertex and the intercepts can be identified and interpreted to solve real-
world problems. See [link].

Section Exercises

Verbal



Exercise:

Problem:

Explain the advantage of writing a quadratic function in standard form.

Solution:

When written in that form, the vertex can be easily identified.

Exercise:

Problem:

How can the vertex of a parabola be used in solving real world problems?

Exercise:

Problem:

Explain why the condition of a ≠ 0 is imposed in the definition of the
quadratic function.

Solution:

If a = 0 then the function becomes a linear function.

Exercise:

Problem:What is another name for the standard form of a quadratic function?

Exercise:

Problem:

What two algebraic methods can be used to find the horizontal intercepts of a
quadratic function?

Solution:

If possible, we can use factoring. Otherwise, we can use the quadratic
formula.

Algebraic



For the following exercises, rewrite the quadratic functions in standard form and
give the vertex.
Exercise:

Problem: f (x) = x2 − 12x + 32

Exercise:

Problem:g (x) = x2 + 2x − 3

Solution:

f(x) = (x + 1)2 − 2, Vertex (−1, −4)

Exercise:

Problem:f(x) = x2 − x

Exercise:

Problem:f(x) = x2 + 5x − 2

Solution:

f(x) = (x + 5
2 )

2
− 33

4 , Vertex (− 5
2 , − 33

4 )

Exercise:

Problem:h (x) = 2x2 + 8x − 10

Exercise:

Problem:k (x) = 3x2 − 6x − 9

Solution:

f(x) = 3(x − 1)2 − 12, Vertex (1, −12)

Exercise:

Problem:f(x) = 2x2 − 6x



Exercise:

Problem:f(x) = 3x2 − 5x − 1

Solution:

f(x) = 3(x − 5
6 )

2
− 37

12 , Vertex ( 5
6 , − 37

12 )

For the following exercises, determine whether there is a minimum or maximum
value to each quadratic function. Find the value and the axis of symmetry.
Exercise:

Problem:y (x) = 2x2 + 10x + 12

Exercise:

Problem:f (x) = 2x2 − 10x + 4

Solution:

Minimum is − 17
2 and occurs at 5

2 . Axis of symmetry is x = 5
2 .

Exercise:

Problem:f(x) = −x2 + 4x + 3

Exercise:

Problem:f(x) = 4x2 + x − 1

Solution:

Minimum is − 17
16 and occurs at − 1

8 . Axis of symmetry is x = − 1
8 .

Exercise:

Problem:h (t) = −4t2 + 6t − 1

Exercise:



Problem:f(x) = 1
2 x2 + 3x + 1

Solution:

Minimum is − 7
2 and occurs at − 3.  Axis of symmetry is x = −3.

Exercise:

Problem:f(x) = − 1
3 x2 − 2x + 3

For the following exercises, determine the domain and range of the quadratic
function.
Exercise:

Problem:f(x) = (x − 3)2 + 2

Solution:

Domain is (−∞, ∞). Range is [2, ∞).

Exercise:

Problem:f(x) = −2(x + 3)2 − 6

Exercise:

Problem:f(x) = x2 + 6x + 4

Solution:

Domain is (−∞, ∞). Range is [−5, ∞).

Exercise:

Problem:f(x) = 2x2 − 4x + 2

Exercise:

Problem:k (x) = 3x2 − 6x − 9



Solution:

Domain is (−∞, ∞). Range is [−12, ∞).

For the following exercises, solve the equations over the complex numbers.
Exercise:

Problem:x2 = −25

Exercise:

Problem:x2 = −8

Solution:

{2i√2, −2i√2}

Exercise:

Problem:x2 + 36 = 0

Exercise:

Problem:x2 + 27 = 0

Solution:

{3i√3, −3i√3}

Exercise:

Problem:x2 + 2x + 5 = 0

Exercise:

Problem:x2 − 4x + 5 = 0

Solution:

{2 + i, 2 − i}



Exercise:

Problem:x2 + 8x + 25 = 0

Exercise:

Problem:x2 − 4x + 13 = 0

Solution:

{2 + 3i, 2 − 3i}

Exercise:

Problem:x2 + 6x + 25 = 0

Exercise:

Problem:x2 − 10x + 26 = 0

Solution:

{5 + i, 5 − i}

Exercise:

Problem:x2 − 6x + 10 = 0

Exercise:

Problem:x(x − 4) = 20

Solution:

{2 + 2√6,  2 − 2√6}

Exercise:

Problem:x(x − 2) = 10

Exercise:



Problem:2x2 + 2x + 5 = 0

Solution:

{− 1
2

+ 3
2

i,   − 1
2

− 3
2

i}

Exercise:

Problem:5x2 − 8x + 5 = 0

Exercise:

Problem:5x2 + 6x + 2 = 0

Solution:

{− 3
5

+ 1
5

i,   − 3
5

− 1
5

i}

Exercise:

Problem: 2x2 − 6x + 5 = 0

Exercise:

Problem:x2 + x + 2 = 0

Solution:

{− 1
2 + 1

2 i√7,   − 1
2 − 1

2 i√7}

Exercise:

Problem:x2 − 2x + 4 = 0

For the following exercises, use the vertex (h, k) and a point on the graph (x, y) to
find the general form of the equation of the quadratic function.
Exercise:

Problem:(h, k) = (2, 0), (x, y) = (4, 4)



Solution:

f(x) = x2 − 4x + 4

Exercise:

Problem:(h, k) = (−2, −1), (x, y) = (−4, 3)

Exercise:

Problem:(h, k) = (0, 1), (x, y) = (2, 5)

Solution:

f(x) = x2 + 1

Exercise:

Problem:(h, k) = (2, 3), (x, y) = (5, 12)

Exercise:

Problem:(h, k) = (−5, 3), (x, y) = (2, 9)

Solution:

f(x) = 6
49 x2 + 60

49 x + 297
49

Exercise:

Problem:(h, k) = (3, 2), (x, y) = (10, 1)

Exercise:

Problem:(h, k) = (0, 1), (x, y) = (1, 0)

Solution:

f(x) = −x2 + 1

Exercise:



Problem:(h, k) = (1, 0), (x, y) = (0, 1)

Graphical

For the following exercises, sketch a graph of the quadratic function and give the
vertex, axis of symmetry, and intercepts.
Exercise:

Problem:f(x) = x2 − 2x

Solution:

Vertex(1,   − 1), Axis of symmetry is x = 1. Intercepts are (0, 0),  (2, 0).

Exercise:

Problem:f(x) = x2 − 6x − 1

Exercise:

Problem:f(x) = x2 − 5x − 6

Solution:



Vertex ( 5
2

, −49
4
), Axis of symmetry is (0, −6), (−1, 0), (6, 0).

Exercise:

Problem:f(x) = x2 − 7x + 3

Exercise:

Problem:f(x) = −2x2 + 5x − 8

Solution:



Vertex ( 5
4 ,   − 39

8 ), Axis of symmetry is x = 5
4 . Intercepts are (0,   − 8).

Exercise:

Problem:f(x) = 4x2 − 12x − 3

Solution:

For the following exercises, write the equation for the graphed function.
Exercise:

Problem:



Solution:

f(x) = x2 − 4x + 1

Exercise:

Problem:



Exercise:

Problem:



Solution:

f(x) = −2x2 + 8x − 1

Exercise:

Problem:

Exercise:

Problem:



Solution:

f(x) = 1
2

x2 − 3x + 7
2

Exercise:

Problem:



Numeric

For the following exercises, use the table of values that represent points on the
graph of a quadratic function. By determining the vertex and axis of symmetry,
find the general form of the equation of the quadratic function.
Exercise:

Problem:

x –2 –1 0 1 2

y 5 2 1 2 5



Solution:

f(x) = x2 + 1

Exercise:

Problem:

x –2 –1 0 1 2

y 1 0 1 4 9

Exercise:

Problem:

x –2 –1 0 1 2

y –2 1 2 1 –2

Solution:

f(x) = 2 − x2

Exercise:

Problem:



x –2 –1 0 1 2

y –8 –3 0 1 0

Exercise:

Problem:

x –2 –1 0 1 2

y 8 2 0 2 8

Solution:

f(x) = 2x2

Technology

For the following exercises, use a calculator to find the answer.
Exercise:

Problem: 

Graph on the same set of axes the functions
f(x) = x2, f(x) = 2x2,  and f(x) = 1

3 x2.

What appears to be the effect of changing the coefficient?

Exercise:



Problem:

Graph on the same set of axes f(x) = x2, f(x) = x2 + 2  and
f(x) = x2, f(x) = x2 + 5 and f(x) = x2 − 3.  What appears to be the effect
of adding a constant?

Solution:

The graph is shifted up or down (a vertical shift).

Exercise:

Problem: 

Graph on the same set of axes
f(x) = x2, f(x) = (x − 2)2, f(x − 3)2,  and f(x) = (x + 4)2.

What appears to be the effect of adding or subtracting those numbers?

Exercise:

Problem:

The path of an object projected at a 45 degree angle with initial velocity of 80
feet per second is given by the function h(x) = −32

(80)2 x2 + x where x is the

horizontal distance traveled and h (x) is the height in feet. Use the TRACE
feature of your calculator to determine the height of the object when it has
traveled 100 feet away horizontally.

Solution:

50 feet

Exercise:

Problem:

A suspension bridge can be modeled by the quadratic function
h(x) = .0001x2 with − 2000 ≤ x ≤ 2000 where |x| is the number of feet
from the center and h (x) is height in feet. Use the TRACE feature of your
calculator to estimate how far from the center does the bridge have a height of
100 feet.



Extensions

For the following exercises, use the vertex of the graph of the quadratic function
and the direction the graph opens to find the domain and range of the function.
Exercise:

Problem:Vertex (1, −2), opens up.

Solution:

Domain is (−∞, ∞). Range is [−2, ∞).

Exercise:

Problem:Vertex (−1, 2) opens down.

Exercise:

Problem:Vertex (−5, 11), opens down.

Solution:

Domain is (−∞, ∞) Range is (−∞, 11].

Exercise:

Problem:Vertex (−100, 100), opens up.

For the following exercises, write the equation of the quadratic function that
contains the given point and has the same shape as the given function.
Exercise:

Problem:

Contains (1, 1) and has shape of f(x) = 2x2. Vertex is on the y-axis.

Solution:

f(x) = 2x2 − 1

Exercise:



Problem:

Contains (−1, 4) and has the shape of f(x) = 2x2. Vertex is on the y-axis.

Exercise:

Problem:

Contains (2, 3) and has the shape of f(x) = 3x2. Vertex is on the y-axis.

Solution:

f(x) = 3x2 − 9

Exercise:

Problem:

Contains (1, −3) and has the shape of f(x) = −x2. Vertex is on the y-axis.

Exercise:

Problem:

Contains (4, 3) and has the shape of f(x) = 5x2. Vertex is on the y-axis.

Solution:

f(x) = 5x2 − 77

Exercise:

Problem:

Contains (1, −6) has the shape of f(x) = 3x2. Vertex has x-coordinate of
−1.

Real-World Applications

Exercise:



Problem:

Find the dimensions of the rectangular corral producing the greatest enclosed
area given 200 feet of fencing.

Solution:

50 feet by 50 feet. Maximize f(x) = −x2 + 100x.

Exercise:

Problem:

Find the dimensions of the rectangular corral split into 2 pens of the same size
producing the greatest possible enclosed area given 300 feet of fencing.

Exercise:

Problem:

Find the dimensions of the rectangular corral producing the greatest enclosed
area split into 3 pens of the same size given 500 feet of fencing.

Solution:

125 feet by 62.5 feet. Maximize f(x) = −2x2 + 250x.

Exercise:

Problem:

Among all of the pairs of numbers whose sum is 6, find the pair with the
largest product. What is the product?

Exercise:

Problem:

Among all of the pairs of numbers whose difference is 12, find the pair with
the smallest product. What is the product?

Solution:

6 and − 6; product is –36; maximize f(x) = x2 + 12x.

Exercise:



Problem:

Suppose that the price per unit in dollars of a cell phone production is
modeled by p = $45 − 0.0125x, where x is in thousands of phones produced,
and the revenue represented by thousands of dollars is R = x ⋅ p. Find the
production level that will maximize revenue.

Exercise:

Problem:

A rocket is launched in the air. Its height, in meters above sea level, as a
function of time, in seconds, is given by h (t) = −4.9t2 + 229t + 234. Find
the maximum height the rocket attains.

Solution:

2909.56 meters

Exercise:

Problem:

A ball is thrown in the air from the top of a building. Its height, in meters
above ground, as a function of time, in seconds, is given by
h (t) = −4.9t2 + 24t + 8. How long does it take to reach maximum height?

Exercise:

Problem:

A soccer stadium holds 62,000 spectators. With a ticket price of $11, the
average attendance has been 26,000. When the price dropped to $9, the
average attendance rose to 31,000. Assuming that attendance is linearly
related to ticket price, what ticket price would maximize revenue?

Solution:

$10.70

Exercise:



Problem:

A farmer finds that if she plants 75 trees per acre, each tree will yield 20
bushels of fruit. She estimates that for each additional tree planted per acre,
the yield of each tree will decrease by 3 bushels. How many trees should she
plant per acre to maximize her harvest?

Glossary

axis of symmetry
a vertical line drawn through the vertex of a parabola around which the
parabola is symmetric; it is defined by x = − b

2a
.

general form of a quadratic function
the function that describes a parabola, written in the form
f(x) = ax2 + bx + c, where a, b, and c are real numbers and a ≠ 0.

standard form of a quadratic function
the function that describes a parabola, written in the form
f(x) = a(x − h)2 + k, where (h,  k) is the vertex.

vertex
the point at which a parabola changes direction, corresponding to the
minimum or maximum value of the quadratic function

vertex form of a quadratic function
another name for the standard form of a quadratic function

zeros
in a given function, the values of x at which y = 0, also called roots



Power Functions and Polynomial Functions
In this section, you will:

Identify power functions.
Identify end behavior of power functions.
Identify polynomial functions.
Identify the degree and leading coefficient of polynomial functions.

Suppose a certain species of bird thrives on a small island. Its population
over the last few years is shown in [link].

Year

(credit: Jason Bay, Flickr)



2009 2010 2011 2012 2013

Bird
Population 800 897 992 1, 083 1, 169

The population can be estimated using the function
P(t) = −0.3t3 + 97t + 800, whereP(t) represents the bird population
on the island t years after 2009. We can use this model to estimate the
maximum bird population and when it will occur. We can also use this
model to predict when the bird population will disappear from the island. In
this section, we will examine functions that we can use to estimate and
predict these types of changes.

Identifying Power Functions

In order to better understand the bird problem, we need to understand a
specific type of function. A power function is a function with a single term
that is the product of a real number, a coefficient, and a variable raised to a
fixed real number. (A number that multiplies a variable raised to an
exponent is known as a coefficient.)

As an example, consider functions for area or volume. The function for the
area of a circle with radius r  is
Equation:

A(r) = πr2

and the function for the volume of a sphere with radius r  is
Equation:

V (r) =
4

3
πr3



Both of these are examples of power functions because they consist of a
coefficient,π or 4

3
π, multiplied by a variable r raised to a power.

Note:
Power Function
A power function is a function that can be represented in the form
Equation:

f(x) = kxp

where k  and p are real numbers, and k  is known as the coefficient.

Note:
Is f(x) = 2x a power function?
No. A power function contains a variable base raised to a fixed power. This
function has a constant base raised to a variable power. This is called an
exponential function, not a power function.

Example:
Exercise:

Problem:
Identifying Power Functions

Which of the following functions are power functions?



Solution:

All of the listed functions are power functions.

The constant and identity functions are power functions because they
can be written as f(x) = x0 and f(x) = x1 respectively.

The quadratic and cubic functions are power functions with whole
number powers f(x) = x2 and f(x) = x3.

The reciprocal and reciprocal squared functions are power functions
with negative whole number powers because they can be written as
f(x) = x−1 and f(x) = x−2.

The square and cube root functions are power functions with
fractional powers because they can be written as f(x) = x1/2 or
f(x) = x1/3.

Note:
Exercise:

Problem:Which functions are power functions? 

f(x) = 1 Constant function

f(x) = x Identify function

f(x) = x2 Quadratic function

f(x) = x3 Cubic function

f(x) = 1
x

  Reciprocal function

f(x) = 1
x2 Reciprocal squared function

f(x) = √x Square root function

f(x) = 3√x Cube root function



Solution:

f(x)  is a power function because it can be written as f(x) = 8x5.
The other functions are not power functions.

Identifying End Behavior of Power Functions

[link] shows the graphs of f(x) = x2, g(x) = x4 and andh(x) = x6,
which are all power functions with even, whole-number powers. Notice that
these graphs have similar shapes, very much like that of the quadratic
function in the toolkit. However, as the power increases, the graphs flatten
somewhat near the origin and become steeper away from the origin.

f(x) = 2x2 ⋅ 4x3

g(x) = −x5 + 5x3 − 4x

h(x) = 2x5−1
3x2+4

Even-power functions



To describe the behavior as numbers become larger and larger, we use the
idea of infinity. We use the symbol ∞ for positive infinity and − ∞ for
negative infinity. When we say that “x approaches infinity,” which can be
symbolically written asx → ∞, we are describing a behavior; we are
saying thatx is increasing without bound.

With the even-power function, as the input increases or decreases without
bound, the output values become very large, positive numbers.
Equivalently, we could describe this behavior by saying that asx
approaches positive or negative infinity, the f (x) values increase without
bound. In symbolic form, we could write
Equation:

as x → ±∞,  f(x) → ∞

[link] shows the graphs of f(x) = x3, g(x) = x5, andh(x) = x7, which
are all power functions with odd, whole-number powers. Notice that these
graphs look similar to the cubic function in the toolkit. Again, as the power
increases, the graphs flatten near the origin and become steeper away from
the origin.



These examples illustrate that functions of the form f (x) = xn reveal
symmetry of one kind or another. First, in [link] we see that even functions
of the form f (x) = xn, n even, are symmetric about the y-axis. In [link]
we see that odd functions of the form f (x) = xn, n odd, are symmetric
about the origin.

For these odd power functions, asx  approaches negative infinity, f (x)
decreases without bound. Asx  approaches positive infinity, f (x)  increases
without bound. In symbolic form we write
Equation:

Odd-power function

as x → −∞,  f(x) → −∞ 

as x → ∞,  f(x) → ∞



The behavior of the graph of a function as the input values get very small (
x → −∞ ) and get very large (x → ∞ ) is referred to as the end behavior
of the function. We can use words or symbols to describe end behavior.

[link] shows the end behavior of power functions in the form f(x) = kxn

wheren is a non-negative integer depending on the power and the constant.



Note:
Given a power function f(x) = kxn wheren is a non-negative integer,
identify the end behavior.

1. Determine whether the power is even or odd.
2. Determine whether the constant is positive or negative.
3. Use [link] to identify the end behavior.

Example:
Exercise:

Problem:
Identifying the End Behavior of a Power Function

Describe the end behavior of the graph of f(x) = x8.

Solution:

The coefficient is 1 (positive) and the exponent of the power function
is 8 (an even number). Asx approaches infinity, the output (value of
f(x) ) increases without bound. We write asx → ∞,  f(x) → ∞.
Asx approaches negative infinity, the output increases without bound.
In symbolic form, asx → −∞,  f(x) → ∞. We can graphically
represent the function as shown in [link].



Example:
Exercise:

Problem:
Identifying the End Behavior of a Power Function.

Describe the end behavior of the graph of f(x) = −x9.

Solution:

The exponent of the power function is 9 (an odd number). Because
the coefficient is –1 (negative), the graph is the reflection about thex-
axis of the graph of f(x) = x9. [link] shows that asx approaches
infinity, the output decreases without bound. Asx approaches negative
infinity, the output increases without bound. In symbolic form, we
would write
Equation:

as x → −∞,  f(x) → ∞ 

as x → ∞,  f(x) → −∞



Analysis

We can check our work by using the table feature on a graphing utility.



x f (x)

–10 1,000,000,000

–5 1,953,125

0 0

5 –1,953,125

10 –1,000,000,000

We can see from [link] that, when we substitute very small values forx,
the output is very large, and when we substitute very large values forx, the
output is very small (meaning that it is a very large negative value).

Note:
Exercise:

Problem:

Describe in words and symbols the end behavior of f(x) = −5x4.

Solution:

Asx approaches positive or negative infinity, f (x) decreases without
bound: asx → ±∞,  f(x) → −∞ because of the negative
coefficient.

Identifying Polynomial Functions

An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a
roughly circular shape. The slick is currently 24 miles in radius, but that



radius is increasing by 8 miles each week. We want to write a formula for
the area covered by the oil slick by combining two functions. The radius r
of the spill depends on the number of weeksw  that have passed. This
relationship is linear.
Equation:

r(w) = 24 + 8w

We can combine this with the formula for the areaA  of a circle.
Equation:

A(r) = πr2

Composing these functions gives a formula for the area in terms of weeks.
Equation:

Multiplying gives the formula.
Equation:

A(w) = 576π + 384πw + 64πw2

This formula is an example of a polynomial function. A polynomial
function consists of either zero or the sum of a finite number of non-
zero terms, each of which is a product of a number, called the coefficient of
the term, and a variable raised to a non-negative integer power.

Note:
Polynomial Functions

A(w) = A(r(w))

= A(24 + 8w)

= π(24 + 8w)2



Letn  be a non-negative integer. A polynomial function is a function that
can be written in the form
Equation:

f(x) = anx
n + an-1x

n-1 + ... + a2x
2 + a1x + a1

This is called the general form of a polynomial function. Each ai  is a
coefficient and can be any real number, but an  cannot = 0. Each product
aix

i  is a term of a polynomial function.

Example:
Exercise:

Problem:
Identifying Polynomial Functions

Which of the following are polynomial functions? 
Equation:

Solution:

The first two functions are examples of polynomial functions because
they can be written in the form 
f(x) = anx

n + an-1x
n-1 + ... + a2x

2 + a1x + a1 where the powers
are non-negative integers and the coefficients are real numbers.

f(x)  can be written as f(x) = 6x4 + 4.
g(x)  can be written as g(x) = −x3 + 4x.

g(x) = −x(x2 − 4)

h(x) = 5√x + 2

f(x) = 2x3 ⋅ 3x + 4



h(x)  cannot be written in this form and is therefore not a
polynomial function.

Identifying the Degree and Leading Coefficient of a Polynomial
Function

Because of the form of a polynomial function, we can see an infinite variety
in the number of terms and the power of the variable. Although the order of
the terms in the polynomial function is not important for performing
operations, we typically arrange the terms in descending order of power, or
in general form. The degree of the polynomial is the highest power of the
variable that occurs in the polynomial; it is the power of the first variable if
the function is in general form. The leading term is the term containing the
highest power of the variable, or the term with the highest degree. The
leading coefficient is the coefficient of the leading term.

Note:
Terminology of Polynomial Functions
We often rearrange polynomials so that the powers are descending.

When a polynomial is written in this way, we say that it is in general form.

Note:



Given a polynomial function, identify the degree and leading
coefficient.

1. Find the highest power ofx  to determine the degree function.
2. Identify the term containing the highest power ofx  to find the leading

term.
3. Identify the coefficient of the leading term.

Example:
Exercise:

Problem:
Identifying the Degree and Leading Coefficient of a Polynomial
Function

Identify the degree, leading term, and leading coefficient of the
following polynomial functions.
Equation:

Solution:

For the function f (x), the highest power ofx is 3, so the degree is 3.
The leading term is the term containing that degree, −4x3. The
leading coefficient is the coefficient of that term, −4.

For the function g (t), the highest power of t is 5, so the degree is 5.
The leading term is the term containing that degree, 5t5. The leading
coefficient is the coefficient of that term, 5.

g(t) = 5t5 − 2t3 + 7t

h(p) = 6p − p3 − 2

f(x) = 3 + 2x2 − 4x3



For the functionh (p), the highest power of p is 3, so the degree is 3.
The leading term is the term containing that degree, − p3; the leading
coefficient is the coefficient of that term, −1.

Note:
Exercise:

Problem:

Identify the degree, leading term, and leading coefficient of the
polynomial f(x) = 4x2 − x6 + 2x − 6.

Solution:

The degree is 6. The leading term is − x6. The leading coefficient is
− 1.

Identifying End Behavior of Polynomial Functions

Knowing the degree of a polynomial function is useful in helping us predict
its end behavior. To determine its end behavior, look at the leading term of
the polynomial function. Because the power of the leading term is the
highest, that term will grow significantly faster than the other terms asx
gets very large or very small, so its behavior will dominate the graph. For
any polynomial, the end behavior of the polynomial will match the end
behavior of the term of highest degree. See [link].



Polynomial Function
Leading
Term

Graph of
Polynomial
FunctionPolynomial Function

Leading
Term

Graph of
Polynomial
Function

f(x) = 5x4 + 2x3 − x − 4 5x4

f(x) = −2x6 − x5 + 3x4 + x3 −2x6

f(x) = 3x5 − 4x4 + 2x2 + 1 3x5



Polynomial Function
Leading
Term

Graph of
Polynomial
Function

f(x) = −6x3 + 7x2 + 3x + 1 −6x3

Example:
Exercise:

Problem:
Identifying End Behavior and Degree of a Polynomial Function

Describe the end behavior and determine a possible degree of the
polynomial function in [link].



Solution:

As the input valuesx  get very large, the output values f(x) increase
without bound. As the input valuesx  get very small, the output values
f(x) decrease without bound. We can describe the end behavior
symbolically by writing
Equation:

In words, we could say that asx values approach infinity, the function
values approach infinity, and asx values approach negative infinity,
the function values approach negative infinity.

as x → −∞,  f(x) → −∞ 

as x → ∞,  f(x) → ∞



We can tell this graph has the shape of an odd degree power function
that has not been reflected, so the degree of the polynomial creating
this graph must be odd and the leading coefficient must be positive.

Note:
Exercise:

Problem:

Describe the end behavior, and determine a possible degree of the
polynomial function in [link].

Solution:

Asx → ∞,  f(x) → −∞;  as x → −∞,  f(x) → −∞. It has the
shape of an even degree power function with a negative coefficient.



Example:
Exercise:

Problem:
Identifying End Behavior and Degree of a Polynomial Function

Given the function f(x) = −3x2(x − 1)(x + 4), express the
function as a polynomial in general form, and determine the leading
term, degree, and end behavior of the function.

Solution:

Obtain the general form by expanding the given expression for f (x).
Equation:

The general form is f (x) = −3x4 − 9x3 + 12x2.  The leading term
is − 3x4;  therefore, the degree of the polynomial is 4. The degree is
even (4) and the leading coefficient is negative (–3), so the end
behavior is
Equation:

Note:
Exercise:

= −3x2(x2 + 3x − 4)

= −3x4 − 9x3 + 12x2

f(x) = −3x2(x − 1)(x + 4)

as x → −∞,  f(x) → −∞ 

as x → ∞,  f(x) → −∞



Problem:

Given the function f(x) = 0.2(x − 2)(x + 1)(x − 5), express the
function as a polynomial in general form and determine the leading
term, degree, and end behavior of the function.

Solution:

The leading term is 0.2x3, so it is a degree 3 polynomial. Asx
approaches positive infinity, f (x) increases without bound; asx
approaches negative infinity, f (x) decreases without bound.

Identifying Local Behavior of Polynomial Functions

In addition to the end behavior of polynomial functions, we are also
interested in what happens in the “middle” of the function. In particular, we
are interested in locations where graph behavior changes. A turning point
is a point at which the function values change from increasing to decreasing
or decreasing to increasing.

We are also interested in the intercepts. As with all functions, the y-intercept
is the point at which the graph intersects the vertical axis. The point
corresponds to the coordinate pair in which the input value is zero. Because
a polynomial is a function, only one output value corresponds to each input
value so there can be only one y-intercept (0, a0). The x-intercepts occur at
the input values that correspond to an output value of zero. It is possible to
have more than one x-intercept. See [link].



Note:
Intercepts and Turning Points of Polynomial Functions
A turning point of a graph is a point at which the graph changes direction
from increasing to decreasing or decreasing to increasing. The y-intercept
is the point at which the function has an input value of zero. Thex-
intercepts are the points at which the output value is zero.



Note:
Given a polynomial function, determine the intercepts.

1. Determine the y-intercept by setting x = 0  and finding the
corresponding output value.

2. Determine thex-intercepts by solving for the input values that yield
an output value of zero.

Example:
Exercise:

Problem:
Determining the Intercepts of a Polynomial Function

Given the polynomial function f(x) = (x − 2)(x + 1)(x − 4),
written in factored form for your convenience, determine the y-andx-
intercepts.

Solution:

The y-intercept occurs when the input is zero so substitute 0 forx.
Equation:

The y-intercept is (0, 8).

The x-intercepts occur when the output is zero.
Equation:

f(0) = (0 − 2)(0 + 1)(0 − 4)

         = (−2)(1)(−4)

         = 8



Thex-intercepts are (2, 0), (– 1, 0), and (4, 0).

We can see these intercepts on the graph of the function shown in
[link].

      0 = (x − 2)(x + 1)(x − 4)

x − 2 = 0 or x + 1 = 0 or x − 4 = 0

      x = 2 or      x = −1 or        x = 4



Example:
Exercise:

Problem:
Determining the Intercepts of a Polynomial Function with
Factoring

Given the polynomial function f(x) = x4 − 4x2 − 45, determine the
y-andx-intercepts.

Solution:

The y-intercept occurs when the input is zero.
Equation:

The y-intercept is (0, −45).

The x-intercepts occur when the output is zero. To determine when the
output is zero, we will need to factor the polynomial.
Equation:

Equation:

0 = (x − 3)(x + 3)(x2 + 5)

Equation:

        = −45

f(0) = (0)4 − 4(0)2 − 45

f(x) = x4 − 4x2 − 45

= (x2 − 9)(x2 + 5)

= (x − 3)(x + 3)(x2 + 5)



The x-intercepts are (3, 0) and (– 3, 0).

We can see these intercepts on the graph of the function shown in
[link]. We can see that the function is even because f (x) = f (−x).

Note:
Exercise:

Problem:

Given the polynomial function f(x) = 2x3 − 6x2 − 20x, determine
the y-andx-intercepts.

x − 3 = 0 or x + 3 = 0 or x2 + 5 = 0

      x = 3 or       x = −3 or (no real solution)



Solution:

y-intercept (0, 0); x-intercepts (0, 0), (– 2, 0), and(5, 0)

Comparing Smooth and Continuous Graphs

The degree of a polynomial function helps us to determine the number ofx-
intercepts and the number of turning points. A polynomial function ofnth
degree is the product ofn factors, so it will have at mostn roots or zeros, or
x-intercepts. The graph of the polynomial function of degreenmust have
at mostn– 1 turning points. This means the graph has at most one fewer
turning point than the degree of the polynomial or one fewer than the
number of factors.

A continuous function has no breaks in its graph: the graph can be drawn
without lifting the pen from the paper. A smooth curve is a graph that has
no sharp corners. The turning points of a smooth graph must always occur
at rounded curves. The graphs of polynomial functions are both continuous
and smooth.

Note:
Intercepts and Turning Points of Polynomials
A polynomial of degreenwill have, at most,n x-intercepts andn − 1
turning points.

Example:
Exercise:

Problem:
Determining the Number of Intercepts and Turning Points of a
Polynomial



Without graphing the function, determine the local behavior of the
function by finding the maximum number ofx-intercepts and turning
points for f(x) = −3x10 + 4x7 − x4 + 2x3.

Solution:

The polynomial has a degree of 10, so there are at most 10  x-
intercepts and at most 10 − 1 = 9 turning points.

Note:
Exercise:

Problem:

Without graphing the function, determine the maximum number ofx-
intercepts and turning points for
f(x) = 108 − 13x9 − 8x4 + 14x12 + 2x3

Solution:

There are at most 12x-intercepts and at most 11 turning points.

Example:
Exercise:

Problem:
Drawing Conclusions about a Polynomial Function from the
Graph

What can we conclude about the polynomial represented by the graph
shown in [link] based on its intercepts and turning points?



Solution:

The end behavior of the graph tells us this is the graph of an even-
degree polynomial. See [link].



The graph has 2x-intercepts, suggesting a degree of 2 or greater, and
3 turning points, suggesting a degree of 4 or greater. Based on this, it
would be reasonable to conclude that the degree is even and at least 4.

Note:
Exercise:

Problem:

What can we conclude about the polynomial represented by the graph
shown in [link] based on its intercepts and turning points?

Solution:

The end behavior indicates an odd-degree polynomial function; there
are 3x-intercepts and 2 turning points, so the degree is odd and at



least 3. Because of the end behavior, we know that the lead coefficient
must be negative.

Example:
Exercise:

Problem:
Drawing Conclusions about a Polynomial Function from the
Factors

Given the function f(x) = −4x (x + 3) (x − 4),  determine the local
behavior.

Solution:

The y-intercept is found by evaluating f(0).
Equation:

The y-intercept is (0, 0).

Thex-intercepts are found by determining the zeros of the function.
Equation:

Thex-intercepts are (0, 0), (– 3, 0), and (4, 0).

The degree is 3 so the graph has at most 2 turning points.

f(0) = −4(0)(0 + 3)(0 − 4)

        = 0

0 = −4x(x + 3)(x − 4)

x = 0 or x + 3 = 0 or x − 4 = 0

x = 0 or       x = −3 or      x = 4



Note:
Exercise:

Problem:

Given the function f(x) = 0.2(x − 2)(x + 1)(x − 5), determine the
local behavior.

Solution:

Thex-intercepts are (2, 0), (−1, 0),and (5, 0), the y-intercept is
(0, 2), and the graph has at most 2 turning points.

Note:
Access these online resources for additional instruction and practice with
power and polynomial functions.

Find Key Information about a Given Polynomial Function
End Behavior of a Polynomial Function
Turning Points andx-intercepts of Polynomial Functions
Least Possible Degree of a Polynomial Function

Key Equations

general form
of a
polynomial
function

f(x) = anx
n + an-1x

n-1 + ... + a2x
2 + a1x + a1

http://openstaxcollege.org/l/keyinfopoly
http://openstaxcollege.org/l/endbehavior
http://openstaxcollege.org/l/turningpoints
http://openstaxcollege.org/l/leastposdegree


Key Concepts

A power function is a variable base raised to a number power. See
[link].
The behavior of a graph as the input decreases beyond bound and
increases beyond bound is called the end behavior.
The end behavior depends on whether the power is even or odd. See
[link] and [link].
A polynomial function is the sum of terms, each of which consists of a
transformed power function with positive whole number power. See
[link].
The degree of a polynomial function is the highest power of the
variable that occurs in a polynomial. The term containing the highest
power of the variable is called the leading term. The coefficient of the
leading term is called the leading coefficient. See [link].
The end behavior of a polynomial function is the same as the end
behavior of the power function represented by the leading term of the
function. See [link] and [link].
A polynomial of degreen  will have at mostn  x-intercepts and at most
n − 1  turning points. See [link], [link], [link], [link], and [link].

Section Exercises

Verbal

Exercise:

Problem:

Explain the difference between the coefficient of a power function and
its degree.

Solution:

The coefficient of the power function is the real number that is
multiplied by the variable raised to a power. The degree is the highest



power appearing in the function.

Exercise:

Problem:

If a polynomial function is in factored form, what would be a good
first step in order to determine the degree of the function?

Exercise:

Problem:

In general, explain the end behavior of a power function with odd
degree if the leading coefficient is positive.

Solution:

Asx  decreases without bound, so does f (x).  As x  increases without
bound, so does f (x).

Exercise:

Problem:

What is the relationship between the degree of a polynomial function
and the maximum number of turning points in its graph?

Exercise:

Problem:

What can we conclude if, in general, the graph of a polynomial
function exhibits the following end behavior? As
x → −∞, f(x) → −∞  and asx → ∞, f(x) → −∞.

Solution:

The polynomial function is of even degree and leading coefficient is
negative.



Algebraic

For the following exercises, identify the function as a power function, a
polynomial function, or neither.
Exercise:

Problem:f(x) = x5

Exercise:

Problem:f(x) = (x2)
3

Solution:

Power function

Exercise:

Problem:f(x) = x − x4

Exercise:

Problem:f(x) = x2

x2−1

Solution:

Neither

Exercise:

Problem:f(x) = 2x (x + 2)(x − 1)2

Exercise:

Problem:f(x) = 3x+1

Solution:



Neither

For the following exercises, find the degree and leading coefficient for the
given polynomial.
Exercise:

Problem:−3x4

Exercise:

Problem:7 − 2x2

Solution:

Degree = 2, Coefficient = –2

Exercise:

Problem:−2x2 −  3x5 +  x − 6 

Exercise:

Problem:x (4 − x2)(2x + 1)

Solution:

Degree =4, Coefficient = –2

Exercise:

Problem:x2(2x − 3)2

For the following exercises, determine the end behavior of the functions.
Exercise:

Problem:f (x) = x4



Solution:

Asx → ∞, f(x) → ∞, asx → −∞, f(x) → ∞

Exercise:

Problem:f (x) = x3

Exercise:

Problem:f (x) = −x4

Solution:

Asx → −∞, f(x) → −∞, asx → ∞, f(x) → −∞

Exercise:

Problem:f (x) = −x9

Exercise:

Problem:f(x) = −2x4 −  3x2 +  x − 1 

Solution:

Asx → −∞, f(x) → −∞, asx → ∞, f(x) → −∞

Exercise:

Problem:f(x) = 3x2 +  x − 2

Exercise:

Problem:f(x) = x2(2x3 − x + 1)

Solution:



Asx → ∞, f(x) → ∞, asx → −∞, f(x) → −∞

Exercise:

Problem:f(x) = (2 − x)7

For the following exercises, find the intercepts of the functions.
Exercise:

Problem:f (t) = 2 (t − 1) (t + 2)(t − 3)

Solution:

y-intercept is (0, 12), t-intercepts are (1, 0); (– 2, 0); and (3, 0).

Exercise:

Problem:g (n) = −2 (3n − 1)(2n + 1)

Exercise:

Problem:f(x) = x4 − 16

Solution:

y-intercept is (0, −16). x-intercepts are (2, 0) and (−2, 0).

Exercise:

Problem:f(x) = x3 + 27

Exercise:

Problem:f(x) = x (x2 − 2x − 8)

Solution:



y-intercept is (0, 0). x-intercepts are (0, 0), (4, 0), and (−2,  0).

Exercise:

Problem:f(x) = (x + 3)(4x2 − 1)

Graphical

For the following exercises, determine the least possible degree of the
polynomial function shown.
Exercise:

Problem:

Solution:

3

Exercise:

Problem:



Exercise:

Problem:

Solution:

5

Exercise:

Problem:



Exercise:

Problem:

Solution:

3

Exercise:

Problem:



Exercise:

Problem:

Solution:

5



Exercise:

Problem:

For the following exercises, determine whether the graph of the function
provided is a graph of a polynomial function. If so, determine the number of
turning points and the least possible degree for the function.
Exercise:

Problem:



Solution:

Yes. Number of turning points is 2. Least possible degree is 3.

Exercise:

Problem:



Exercise:

Problem:

Solution:

Yes. Number of turning points is 1. Least possible degree is 2.

Exercise:

Problem:



Exercise:

Problem:

Solution:

Yes. Number of turning points is 0. Least possible degree is 1.



Exercise:

Problem:

Solution:

No.

Exercise:

Problem:



Solution:

Yes. Number of turning points is 0. Least possible degree is 1.

Numeric

For the following exercises, make a table to confirm the end behavior of the
function.
Exercise:

Problem:f(x) = −x3

Exercise:

Problem:f(x) = x4 − 5x2

Solution:



x f (x)

10 9,500

100 99,950,000

–10 9,500

–100 99,950,000

asx → −∞, f(x) → ∞, asx → ∞, f(x) → ∞

Exercise:

Problem:f(x) = x2(1 − x)2

Exercise:

Problem:f(x) = (x − 1)(x − 2)(3 − x)

Solution:

x f (x)

10 –504

100 –941,094

–10 1,716



x f (x)

–100 1,061,106

asx → −∞, f(x) → ∞, asx → ∞, f(x) → −∞

Exercise:

Problem:f(x) = x5

10 − x4

Technology

For the following exercises, graph the polynomial functions using a
calculator. Based on the graph, determine the intercepts and the end
behavior.
Exercise:

Problem:f(x) = x3(x − 2)

Solution:



The y-intercept is (0,  0).  The x-intercepts are (0,  0),   (2,  0).  
Asx → −∞, f(x) → ∞, asx → ∞, f(x) → ∞

Exercise:

Problem:f(x) = x(x − 3)(x + 3)

Exercise:

Problem:f(x) = x(14 − 2x)(10 − 2x)

Solution:

The y-intercept is (0, 0) . Thex-intercepts are
(0,  0),   (5,  0),   (7,  0).  

Asx → −∞, f(x) → −∞, asx → ∞, f(x) → ∞

Exercise:

Problem:f(x) = x(14 − 2x)(10 − 2x)2



Exercise:

Problem:f(x) = x3 − 16x

Solution:

The y-intercept is (0,  0).  Thex-intercept is
(−4,  0),   (0,  0),   (4,  0).  
Asx → −∞, f(x) → −∞, asx → ∞, f(x) → ∞

Exercise:

Problem:f(x) = x3 − 27

Exercise:

Problem:f(x) = x4 − 81

Solution:



The y-intercept is (0,   − 81).  The x-intercept are (3,  0),   (−3,  0).  
Asx → −∞, f(x) → ∞, asx → ∞, f(x) → ∞

Exercise:

Problem:f(x) = −x3 + x2 + 2x

Exercise:

Problem:f(x) = x3 − 2x2 − 15x

Solution:



The y-intercept is (0,  0).  Thex-intercepts are
(−3,  0),   (0,  0),   (5,  0).  

Asx → −∞, f(x) → −∞, asx → ∞, f(x) → ∞

Exercise:

Problem:f(x) = x3 − 0.01x

Extensions

For the following exercises, use the information about the graph of a
polynomial function to determine the function. Assume the leading
coefficient is 1 or –1. There may be more than one correct answer.
Exercise:

Problem:

The y-intercept is (0, −4). Thex-intercepts are (−2, 0), (2, 0).
Degree is 2.

End behavior: asx → −∞, f(x) → ∞, asx → ∞, f(x) → ∞.

Solution:



f(x) = x2 − 4

Exercise:

Problem:

The y-intercept is (0, 9). Thex-intercepts are (−3, 0), (3, 0). Degree
is 2.

End behavior:
asx → −∞, f(x) → −∞, asx → ∞, f(x) → −∞.

Exercise:

Problem:

The y-intercept is (0, 0). Thex-intercepts are (0, 0), (2, 0). Degree is
3.

End behavior: asx → −∞, f(x) → −∞, asx → ∞, f(x) → ∞.

Solution:

f(x) = x3 − 4x2 + 4x

Exercise:

Problem:

The y-intercept is (0, 1). Thex-intercept is (1, 0). Degree is 3.

End behavior: asx → −∞, f(x) → ∞, asx → ∞, f(x) → −∞.

Exercise:

Problem:

The y-intercept is (0, 1). There is nox-intercept. Degree is 4.

End behavior: asx → −∞, f(x) → ∞, asx → ∞, f(x) → ∞.

Solution:



f(x) = x4 + 1

Real-World Applications

For the following exercises, use the written statements to construct a
polynomial function that represents the required information.
Exercise:

Problem:

An oil slick is expanding as a circle. The radius of the circle is
increasing at the rate of 20 meters per day. Express the area of the
circle as a function of d, the number of days elapsed.

Exercise:

Problem:

A cube has an edge of 3 feet. The edge is increasing at the rate of 2
feet per minute. Express the volume of the cube as a function ofm, the
number of minutes elapsed.

Solution:

V (m) = 8m3 + 36m2 + 54m + 27

Exercise:

Problem:

A rectangle has a length of 10 inches and a width of 6 inches. If the
length is increased byx inches and the width increased by twice that
amount, express the area of the rectangle as a function ofx.

Exercise:



Problem:

An open box is to be constructed by cutting out square corners of x-

inch sides from a piece of cardboard 8 inches by 8 inches and then
folding up the sides. Express the volume of the box as a function ofx.

Solution:

V (x) = 4x3 − 32x2 + 64x

Exercise:

Problem:

A rectangle is twice as long as it is wide. Squares of side 2 feet are cut
out from each corner. Then the sides are folded up to make an open
box. Express the volume of the box as a function of the width (x).

Glossary

coefficient
a nonzero real number multiplied by a variable raised to an exponent

continuous function
a function whose graph can be drawn without lifting the pen from the
paper because there are no breaks in the graph

degree
the highest power of the variable that occurs in a polynomial

end behavior
the behavior of the graph of a function as the input decreases without
bound and increases without bound

leading coefficient
the coefficient of the leading term

leading term



the term containing the highest power of the variable

polynomial function
a function that consists of either zero or the sum of a finite number of
non-zero terms, each of which is a product of a number, called
the coefficient of the term, and a variable raised to a non-negative
integer power.

power function
a function that can be represented in the form f(x) = kxp  where k  is
a constant, the base is a variable, and the exponent, p,  is a constant

smooth curve
a graph with no sharp corners

term of a polynomial function
any aixi  of a polynomial function in the form
f(x) = anx

n + an-1x
n-1 + ... + a2x

2 + a1x + a1

turning point
the location at which the graph of a function changes direction



Graphs of Polynomial Functions
In this section, you will:

Recognize characteristics of graphs of polynomial functions.
Use factoring to find zeros of polynomial functions.
Identify zeros and their multiplicities.
Determine end behavior.
Understand the relationship between degree and turning points.
Graph polynomial functions.
Use the Intermediate Value Theorem.

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is
shown in [link].

Year 2006 2007 2008 2009 2010 2011 2012 2013

Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

The revenue can be modeled by the polynomial function
Equation:

R(t) = −0.037t4 + 1.414t3 − 19.777t2 + 118.696t − 205.332

where R represents the revenue in millions of dollars and t represents the year, with t = 6
corresponding to 2006. Over which intervals is the revenue for the company increasing? Over
which intervals is the revenue for the company decreasing? These questions, along with many
others, can be answered by examining the graph of the polynomial function. We have already
explored the local behavior of quadratics, a special case of polynomials. In this section we will
explore the local behavior of polynomials in general.

Recognizing Characteristics of Graphs of Polynomial Functions

Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that
these types of graphs are called smooth curves. Polynomial functions also display graphs that
have no breaks. Curves with no breaks are called continuous. [link] shows a graph that represents
a polynomial function and a graph that represents a function that is not a polynomial.



Example:
Exercise:

Problem:
Recognizing Polynomial Functions

Which of the graphs in [link] represents a polynomial function?



Solution:

The graphs of f and h are graphs of polynomial functions. They are smooth and continuous.

The graphs of g and k are graphs of functions that are not polynomials. The graph of
function g has a sharp corner. The graph of function k is not continuous.

Note:
Do all polynomial functions have as their domain all real numbers?
Yes. Any real number is a valid input for a polynomial function.

Using Factoring to Find Zeros of Polynomial Functions

Recall that if f is a polynomial function, the values of x for which f (x) = 0 are called zeros of
f. If the equation of the polynomial function can be factored, we can set each factor equal to zero
and solve for the zeros.

We can use this method to find x-intercepts because at the x-intercepts we find the input values
when the output value is zero. For general polynomials, this can be a challenging prospect. While
quadratics can be solved using the relatively simple quadratic formula, the corresponding
formulas for cubic and fourth-degree polynomials are not simple enough to remember, and
formulas do not exist for general higher-degree polynomials. Consequently, we will limit
ourselves to three cases in this section:

1. The polynomial can be factored using known methods: greatest common factor and
trinomial factoring.

2. The polynomial is given in factored form.



3. Technology is used to determine the intercepts.

Note:
Given a polynomial function f, find the x-intercepts by factoring.

1. Set f (x) = 0.
2. If the polynomial function is not given in factored form:

a. Factor out any common monomial factors.
b. Factor any factorable binomials or trinomials.

3. Set each factor equal to zero and solve to find the x-intercepts.

Example:
Exercise:

Problem:
Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of f(x) = x6 − 3x4 + 2x2.

Solution:

We can attempt to factor this polynomial to find solutions for f (x) = 0. 
 
Equation:

Equation:

  x2(x4 − 3x2 + 2) = 0 Factor the trinomial.

x2(x2 − 1)(x2 − 2) = 0 Set each factor equal to zero.

     x6 − 3x4 + 2x2 = 0
common factor.  

Factor out the greatest

x2 = 0 or         x2 = 1 or         x2 = 2

  x = 0           x = ±1           x = ±√2

(x2 − 1) = 0 (x2 − 2) = 0



This gives us five x-intercepts: (0, 0), (1, 0), (−1, 0), (√2, 0), and (−√2, 0). See [link].
We can see that this is an even function.

Example:
Exercise:

Problem:
Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of f(x) = x3 − 5x2 − x + 5.

Solution:

Find solutions for f(x) = 0  by factoring. 
Equation:

Equation:

There are three x-intercepts: (−1, 0), (1, 0), and (5, 0). See [link].

  x2(x − 5) − (x − 5) = 0 Factor out the common factor.

        (x2 − 1)(x − 5) = 0 Factor the difference of squares.

(x + 1)(x − 1)(x − 5) = 0 Set each factor equal to zero.

      x3 − 5x2 − x + 5 = 0 Factor by grouping.

x + 1 = 0 or x − 1 = 0 or x − 5 = 0

x = −1 x = 1 x = 5



Example:
Exercise:

Problem:
Finding the y- and x-Intercepts of a Polynomial in Factored Form

Find the y- and x-intercepts of g(x) = (x − 2)2(2x + 3).

Solution:

The y-intercept can be found by evaluating g (0).
Equation:

So the y-intercept is (0, 12).

The x-intercepts can be found by solving g (x) = 0.
Equation:

(x − 2)2(2x + 3) = 0

Equation:

g(0) = (0 − 2)2(2(0) + 3)

= 12



So the x-intercepts are (2, 0) and (− 3
2 , 0).

Analysis

We can always check that our answers are reasonable by using a graphing calculator to graph the
polynomial as shown in [link].

Example:
Exercise:

Problem:
Finding the x-Intercepts of a Polynomial Function Using a Graph

(x − 2)2 = 0 (2x + 3) = 0

     x − 2 = 0 or            x = − 3
2

           x = 2



Find the x-intercepts of h(x) = x3 + 4x2 + x − 6.

Solution:

This polynomial is not in factored form, has no common factors, and does not appear to be
factorable using techniques previously discussed. Fortunately, we can use technology to
find the intercepts. Keep in mind that some values make graphing difficult by hand. In these
cases, we can take advantage of graphing utilities.

Looking at the graph of this function, as shown in [link], it appears that there are x-
intercepts at x = −3,−2, and 1.

We can check whether these are correct by substituting these values for x and verifying that
Equation:

h(−3) = h(−2) = h(1) = 0.

Since h(x) = x3 + 4x2 + x − 6, we have:
Equation:

h(−3) = (−3)3 + 4(−3)2 + (−3) − 6 = −27 + 36 − 3 − 6 = 0

h(−2) = (−2)3 + 4(−2)2 + (−2) − 6 = −8 + 16 − 2 − 6 = 0

    h(1) = (1)3 + 4(1)2 + (1) − 6 = 1 + 4 + 1 − 6 = 0



Each x-intercept corresponds to a zero of the polynomial function and each zero yields a
factor, so we can now write the polynomial in factored form.
Equation:

Note:
Exercise:

Problem:Find the y- and x-intercepts of the function f(x) = x4 − 19x2 + 30x.

Solution:

y-intercept (0, 0); x-intercepts (0, 0), (– 5, 0), (2, 0), and (3, 0)

Identifying Zeros and Their Multiplicities

Graphs behave differently at various x-intercepts. Sometimes, the graph will cross over the
horizontal axis at an intercept. Other times, the graph will touch the horizontal axis and bounce
off.

Suppose, for example, we graph the function
Equation:

f(x) = (x + 3)(x − 2)2(x + 1)3.

Notice in [link] that the behavior of the function at each of the x-intercepts is different.

h(x) = x3 + 4x2 + x − 6

        = (x + 3)(x + 2)(x − 1)



The x-intercept −3  is the solution of equation (x + 3) = 0.The graph passes directly through
the x-intercept at x = −3.The factor is linear (has a degree of 1), so the behavior near the
intercept is like that of a line—it passes directly through the intercept. We call this a single zero
because the zero corresponds to a single factor of the function.

The x-intercept 2  is the repeated solution of equation (x − 2)2 = 0.The graph touches the axis
at the intercept and changes direction. The factor is quadratic (degree 2), so the behavior near the
intercept is like that of a quadratic—it bounces off of the horizontal axis at the intercept.
Equation:

(x − 2)2 = (x − 2)(x − 2)

The factor is repeated, that is, the factor (x − 2) appears twice. The number of times a given
factor appears in the factored form of the equation of a polynomial is called the multiplicity. The
zero associated with this factor, x = 2, has multiplicity 2 because the factor (x − 2) occurs
twice.

The x-intercept − 1  is the repeated solution of factor (x + 1)3 = 0.The graph passes through
the axis at the intercept, but flattens out a bit first. This factor is cubic (degree 3), so the behavior
near the intercept is like that of a cubic—with the same S-shape near the intercept as the toolkit
function f (x) = x3. We call this a triple zero, or a zero with multiplicity 3.

For zeros with even multiplicities, the graphs touch or are tangent to the x-axis. For zeros with
odd multiplicities, the graphs cross or intersect the x-axis. See [link] for examples of graphs of
polynomial functions with multiplicity 1, 2, and 3.

Identifying the behavior of the graph at an x-intercept
by examining the multiplicity of the zero.



For higher even powers, such as 4, 6, and 8, the graph will still touch and bounce off of the
horizontal axis but, for each increasing even power, the graph will appear flatter as it approaches
and leaves the x-axis.

For higher odd powers, such as 5, 7, and 9, the graph will still cross through the horizontal axis,
but for each increasing odd power, the graph will appear flatter as it approaches and leaves the x-
axis.

Note:
Graphical Behavior of Polynomials at x-Intercepts
If a polynomial contains a factor of the form (x − h)p, the behavior near the x-intercept h is
determined by the power p. We say that x = h is a zero of multiplicity p.
The graph of a polynomial function will touch the x-axis at zeros with even multiplicities. The
graph will cross the x-axis at zeros with odd multiplicities.
The sum of the multiplicities is the degree of the polynomial function.

Note:
Given a graph of a polynomial function of degree n, identify the zeros and their
multiplicities.

1. If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero.
2. If the graph touches the x-axis and bounces off of the axis, it is a zero with even

multiplicity.
3. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity.
4. The sum of the multiplicities is n.

Example:
Exercise:



Problem:
Identifying Zeros and Their Multiplicities

Use the graph of the function of degree 6 in [link] to identify the zeros of the function and
their possible multiplicities.

Solution:

The polynomial function is of degree n. The sum of the multiplicities must be n.

Starting from the left, the first zero occurs at x = −3.The graph touches the x-axis, so the
multiplicity of the zero must be even. The zero of−3 has multiplicity 2.

The next zero occurs at x = −1.The graph looks almost linear at this point. This is a single
zero of multiplicity 1.

The last zero occurs at x = 4.The graph crosses the x-axis, so the multiplicity of the zero
must be odd. We know that the multiplicity is likely 3 and that the sum of the multiplicities
is likely 6.



Note:
Exercise:

Problem:

Use the graph of the function of degree 5 in [link] to identify the zeros of the function and
their multiplicities.

Solution:

The graph has a zero of –5 with multiplicity 3, a zero of –1 with multiplicity 2, and a zero
of 3 with multiplicity 4.

Determining End Behavior

As we have already learned, the behavior of a graph of a polynomial function of the form
Equation:

f(x) = anxn + an−1xn−1 + ... + a1x + a0

will either ultimately rise or fall as x  increases without bound and will either rise or fall as x
decreases without bound. This is because for very large inputs, say 100 or 1,000, the leading term
dominates the size of the output. The same is true for very small inputs, say –100 or –1,000.

Recall that we call this behavior the end behavior of a function. As we pointed out when
discussing quadratic equations, when the leading term of a polynomial function, anxn, is an even
power function, as x increases or decreases without bound, f(x) increases without bound. When
the leading term is an odd power function, as x decreases without bound, f(x) also decreases
without bound; as x increases without bound, f(x) also increases without bound. If the leading
term is negative, it will change the direction of the end behavior. [link] summarizes all four cases.



Understanding the Relationship between Degree and Turning Points

In addition to the end behavior, recall that we can analyze a polynomial function’s local behavior.
It may have a turning point where the graph changes from increasing to decreasing (rising to
falling) or decreasing to increasing (falling to rising). Look at the graph of the polynomial
function f(x) = x4 − x3 − 4x2 + 4x in [link]. The graph has three turning points.



This function f  is a 4  degree polynomial function and has 3 turning points. The maximum
number of turning points of a polynomial function is always one less than the degree of the
function.

Note:
Interpreting Turning Points
A turning point is a point of the graph where the graph changes from increasing to decreasing
(rising to falling) or decreasing to increasing (falling to rising).
A polynomial of degree n will have at most n − 1 turning points.

Example:
Exercise:

Problem:
Finding the Maximum Number of Turning Points Using the Degree of a Polynomial
Function

Find the maximum number of turning points of each polynomial function.

a. f(x) = −x3 + 4x5 − 3x2 + 1
b. f(x) = −(x − 1)2 (1 + 2x2)

Solution:

a. f(x) = −x 3+ 4x5 − 3x2 + 1

First, rewrite the polynomial function in descending order:
f(x) = 4x5 − x3 − 3x2 + 1

th



Identify the degree of the polynomial function. This polynomial function is of degree
5.

The maximum number of turning points is 5 − 1 = 4.
b. f(x) = −(x − 1)2 (1 + 2x2)

First, identify the leading term of the polynomial function if the function were expanded.

Then, identify the degree of the polynomial function. This polynomial function is of degree
4.

The maximum number of turning points is 4 − 1 = 3.

Graphing Polynomial Functions

We can use what we have learned about multiplicities, end behavior, and turning points to sketch
graphs of polynomial functions. Let us put this all together and look at the steps required to graph
polynomial functions.

Note:
Given a polynomial function, sketch the graph.

1. Find the intercepts.
2. Check for symmetry. If the function is an even function, its graph is symmetrical about the

y-axis, that is, f (−x) = f (x).  If a function is an odd function, its graph is symmetrical
about the origin, that is, f (−x) = −f (x).

3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the x-
intercepts.

4. Determine the end behavior by examining the leading term.
5. Use the end behavior and the behavior at the intercepts to sketch a graph.
6. Ensure that the number of turning points does not exceed one less than the degree of the

polynomial.
7. Optionally, use technology to check the graph.

Example:
Exercise:



Problem:
Sketching the Graph of a Polynomial Function

Sketch a graph of f(x) = −2(x + 3)2(x − 5).

Solution:

This graph has two x-intercepts. At x = −3, the factor is squared, indicating a multiplicity
of 2. The graph will bounce at this x-intercept. At x = 5, the function has a multiplicity of
one, indicating the graph will cross through the axis at this intercept.

The y-intercept is found by evaluating f(0).
Equation:

The y-intercept is (0, 90).

Additionally, we can see the leading term, if this polynomial were multiplied out, would be
− 2x3,  so the end behavior is that of a vertically reflected cubic, with the outputs

decreasing as the inputs approach infinity, and the outputs increasing as the inputs approach
negative infinity. See [link].

To sketch this, we consider that:

As x → −∞ the function f(x) → ∞, so we know the graph starts in the second
quadrant and is decreasing toward the x-axis.

f(0) = −2(0 + 3)2(0 − 5)

        = −2 ⋅ 9 ⋅ (−5)

        = 90



Since f (−x) = −2(−x + 3)2 (−x– 5)  is not equal to f (x), the graph does not
display symmetry.
At (−3, 0), the graph bounces off of the x-axis, so the function must start increasing.

At (0, 90), the graph crosses the y-axis at the y-intercept. See [link].

Somewhere after this point, the graph must turn back down or start decreasing toward the
horizontal axis because the graph passes through the next intercept at (5, 0). See [link].

As x → ∞ the function f(x) → −∞, so we know the graph continues to decrease, and we
can stop drawing the graph in the fourth quadrant.

Using technology, we can create the graph for the polynomial function, shown in [link], and
verify that the resulting graph looks like our sketch in [link].



Note:
Exercise:

Problem:Sketch a graph of f(x) = 1
4

x(x − 1)4(x + 3)3.

Solution:

The complete graph of the polynomial function
f(x) = −2(x + 3)2(x − 5)



Using the Intermediate Value Theorem

In some situations, we may know two points on a graph but not the zeros. If those two points are
on opposite sides of the x-axis, we can confirm that there is a zero between them. Consider a
polynomial function f whose graph is smooth and continuous. The Intermediate Value Theorem
states that for two numbers a and b in the domain of f,if a < b andf (a) ≠ f (b),then the function
f takes on every value between f (a) and f (b).  We can apply this theorem to a special case that
is useful in graphing polynomial functions. If a point on the graph of a continuous function f at
x = a lies above the x-axis and another point at x = b lies below the x-axis, there must exist a
third point between x = a and x = b where the graph crosses the x-axis. Call this point
(c,  f (c)). This means that we are assured there is a solution c wheref (c) = 0.

In other words, the Intermediate Value Theorem tells us that when a polynomial function changes
from a negative value to a positive value, the function must cross the x-axis. [link] shows that
there is a zero between a  and b.

Note:
Intermediate Value Theorem

Using the Intermediate Value Theorem to show there
exists a zero.



Let f  be a polynomial function. The Intermediate Value Theorem states that if f (a)  and f (b)
have opposite signs, then there exists at least one value c  between a  and b  for which f (c) = 0.

Example:
Exercise:

Problem:
Using the Intermediate Value Theorem

Show that the function f(x) = x3 − 5x2 + 3x + 6  has at least two real zeros between
x = 1  and x = 4.

Solution:

As a start, evaluate f(x)  at the integer values x = 1, 2, 3, and4. See [link].

x 1 2 3 4

f(x) 5 0 –3 2

We see that one zero occurs at x = 2.Also, since f(3) is negative and f(4) is positive, by
the Intermediate Value Theorem, there must be at least one real zero between 3 and 4.

We have shown that there are at least two real zeros between x = 1  and x = 4.

Analysis

We can also see on the graph of the function in [link] that there are two real zeros between x = 1
and x = 4.



Note:
Exercise:

Problem:

Show that the function f(x) = 7x5 − 9x4 − x2 has at least one real zero between x = 1
and x = 2.

Solution:

Because f is a polynomial function and since f(1) is negative and f(2) is positive, there is
at least one real zero between x = 1 and x = 2.

Writing Formulas for Polynomial Functions

Now that we know how to find zeros of polynomial functions, we can use them to write formulas
based on graphs. Because a polynomial function written in factored form will have an x-intercept



where each factor is equal to zero, we can form a function that will pass through a set of x-
intercepts by introducing a corresponding set of factors.

Note:
Factored Form of Polynomials
If a polynomial of lowest degree p  has horizontal intercepts at x = x1,x2,… ,xn,  then the
polynomial can be written in the factored form: f(x) = a(x − x1)

p1(x − x2)
p2 ⋯(x − xn)

pn

where the powers pi  on each factor can be determined by the behavior of the graph at the
corresponding intercept, and the stretch factor a  can be determined given a value of the function
other than the x-intercept.

Note:
Given a graph of a polynomial function, write a formula for the function.

1. Identify the x-intercepts of the graph to find the factors of the polynomial.
2. Examine the behavior of the graph at the x-intercepts to determine the multiplicity of each

factor.
3. Find the polynomial of least degree containing all the factors found in the previous step.
4. Use any other point on the graph (the y-intercept may be easiest) to determine the stretch

factor.

Example:
Exercise:

Problem:
Writing a Formula for a Polynomial Function from the Graph

Write a formula for the polynomial function shown in [link].



Solution:

This graph has three x-intercepts: x = −3, 2, and 5.The y-intercept is located at (0,−2).
At x = −3 and x = 5,  the graph passes through the axis linearly, suggesting the
corresponding factors of the polynomial will be linear. At x = 2, the graph bounces at the
intercept, suggesting the corresponding factor of the polynomial will be second degree
(quadratic). Together, this gives us
Equation:

f(x) = a(x + 3)(x − 2)2(x − 5)

To determine the stretch factor, we utilize another point on the graph. We will use the y-
intercept (0, – 2), to solve for a.
Equation:

The graphed polynomial appears to represent the function
f(x) = 1

30 (x + 3)(x − 2)2(x − 5).

Note:
Exercise:

f(0) = a(0 + 3)(0 − 2)2(0 − 5)

  − 2 = a(0 + 3)(0 − 2)2(0 − 5)

  − 2 = −60a

     a = 1
30



Problem:Given the graph shown in [link], write a formula for the function shown.

Solution:

f(x) = − 1
8 (x − 2)3(x + 1)2(x − 4)

Using Local and Global Extrema

With quadratics, we were able to algebraically find the maximum or minimum value of the
function by finding the vertex. For general polynomials, finding these turning points is not
possible without more advanced techniques from calculus. Even then, finding where extrema
occur can still be algebraically challenging. For now, we will estimate the locations of turning
points using technology to generate a graph.

Each turning point represents a local minimum or maximum. Sometimes, a turning point is the
highest or lowest point on the entire graph. In these cases, we say that the turning point is a
global maximum or a global minimum. These are also referred to as the absolute maximum and
absolute minimum values of the function.

Note:
Local and Global Extrema
A local maximum or local minimum at x = a (sometimes called the relative maximum or
minimum, respectively) is the output at the highest or lowest point on the graph in an open
interval around x = a. If a function has a local maximum at a, then f(a) ≥ f(x) for all x in an
open interval around x = a. If a function has a local minimum at a, then f(a) ≤ f(x) for all x in
an open interval around x = a.
A global maximum or global minimum is the output at the highest or lowest point of the
function. If a function has a global maximum at a, then f(a) ≥ f(x) for all x. If a function has
a global minimum at a, then f(a) ≤ f(x) for all x.



We can see the difference between local and global extrema in [link].

Note:
Do all polynomial functions have a global minimum or maximum?
No. Only polynomial functions of even degree have a global minimum or maximum. For
example, f (x) = x has neither a global maximum nor a global minimum.

Example:
Exercise:

Problem:
Using Local Extrema to Solve Applications

An open-top box is to be constructed by cutting out squares from each corner of a 14 cm by
20 cm sheet of plastic then folding up the sides. Find the size of squares that should be cut
out to maximize the volume enclosed by the box.

Solution:

We will start this problem by drawing a picture like that in [link], labeling the width of the
cut-out squares with a variable, w.



Notice that after a square is cut out from each end, it leaves a (14 − 2w) cm by (20 − 2w)
cm rectangle for the base of the box, and the box will be w cm tall. This gives the volume
Equation:

Notice, since the factors are w, 20– 2w and 14– 2w, the three zeros are 10, 7, and 0,
respectively. Because a height of 0 cm is not reasonable, we consider the only the zeros 10
and 7. The shortest side is 14 and we are cutting off two squares, so values w may take on
are greater than zero or less than 7. This means we will restrict the domain of this function
to 0 < w < 7.Using technology to sketch the graph of V (w) on this reasonable domain, we
get a graph like that in [link]. We can use this graph to estimate the maximum value for the
volume, restricted to values for w that are reasonable for this problem—values from 0 to 7.

V (w) = (20 − 2w)(14 − 2w)w

         = 280w − 68w2 + 4w3



From this graph, we turn our focus to only the portion on the reasonable domain, [0,  7]. We
can estimate the maximum value to be around 340 cubic cm, which occurs when the
squares are about 2.75 cm on each side. To improve this estimate, we could use advanced
features of our technology, if available, or simply change our window to zoom in on our
graph to produce [link].

From this zoomed-in view, we can refine our estimate for the maximum volume to about
339 cubic cm, when the squares measure approximately 2.7 cm on each side.

Note:
Exercise:

Problem:

Use technology to find the maximum and minimum values on the interval [−1, 4] of the
function f(x) = −0.2(x − 2)3(x + 1)2(x − 4).

Solution:

The minimum occurs at approximately the point (0,−6.5), and the maximum occurs at
approximately the point (3.5, 7).

Note:



Access the following online resource for additional instruction and practice with graphing
polynomial functions.

Intermediate Value Theorem

Key Concepts

Polynomial functions of degree 2 or more are smooth, continuous functions. See [link].
To find the zeros of a polynomial function, if it can be factored, factor the function and set
each factor equal to zero. See [link], [link], and [link].
Another way to find the x-intercepts of a polynomial function is to graph the function and
identify the points at which the graph crosses the x-axis. See [link].
The multiplicity of a zero determines how the graph behaves at the x-intercepts. See [link].
The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.
The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.
The end behavior of a polynomial function depends on the leading term.
The graph of a polynomial function changes direction at its turning points.
A polynomial function of degree n  has at most n − 1  turning points. See [link].
To graph polynomial functions, find the zeros and their multiplicities, determine the end
behavior, and ensure that the final graph has at most n − 1  turning points. See [link] and
[link].
Graphing a polynomial function helps to estimate local and global extremas. See [link].
The Intermediate Value Theorem tells us that if f(a) and f(b)  have opposite signs, then
there exists at least one value c  between a  and b  for which f (c) = 0.  See [link].

Section Exercises

Verbal

Exercise:

Problem:

What is the difference between an x-intercept and a zero of a polynomial function f?

Solution:

The x-intercept is where the graph of the function crosses the x-axis, and the zero of the
function is the input value for which f(x) = 0.

Exercise:

Problem:

If a polynomial function of degree n  has n  distinct zeros, what do you know about the graph
of the function?

http://openstaxcollege.org/l/ivt


Exercise:

Problem:

Explain how the Intermediate Value Theorem can assist us in finding a zero of a function.

Solution:

If we evaluate the function at a  and at b  and the sign of the function value changes, then we
know a zero exists between a  and b.

Exercise:

Problem:Explain how the factored form of the polynomial helps us in graphing it.

Exercise:

Problem:

If the graph of a polynomial just touches the x-axis and then changes direction, what can we
conclude about the factored form of the polynomial?

Solution:

There will be a factor raised to an even power.

Algebraic

For the following exercises, find the x- or t-intercepts of the polynomial functions.
Exercise:

Problem: C (t) = 2 (t − 4) (t + 1)(t − 6)

Exercise:

Problem: C (t) = 3 (t + 2) (t − 3)(t + 5)

Solution:

(−2, 0), (3, 0), (−5, 0)

Exercise:

Problem: C (t) = 4t(t − 2)2(t + 1)

Exercise:

Problem: C (t) = 2t (t − 3)(t + 1)2



Solution:

(3, 0), (−1, 0), (0, 0)

Exercise:

Problem: C (t) = 2t4 − 8t3 + 6t2

Exercise:

Problem: C (t) = 4t4 + 12t3 − 40t2

Solution:

(0, 0),   (−5, 0),   (2, 0)

Exercise:

Problem: f(x) = x4 − x2

Exercise:

Problem: f(x) = x3 + x2 − 20x

Solution:

(0, 0),   (−5, 0),   (4, 0)

Exercise:

Problem:f(x) = x3 + 6x2 − 7x

Exercise:

Problem:f(x) = x3 + x2 − 4x − 4

Solution:

(2, 0),   (−2, 0),   (−1, 0)

Exercise:

Problem:f(x) = x3 + 2x2 − 9x − 18

Exercise:

Problem:f(x) = 2x3 − x2 − 8x + 4

Solution:



(−2, 0), (2, 0), ( 1
2 , 0)

Exercise:

Problem:f(x) = x6 − 7x3 − 8

Exercise:

Problem:f(x) = 2x4 + 6x2 − 8

Solution:

(1, 0),   (−1, 0)

Exercise:

Problem:f(x) = x3 − 3x2 − x + 3

Exercise:

Problem:f(x) = x6 − 2x4 − 3x2

Solution:

(0, 0), (√3, 0), (−√3, 0)

Exercise:

Problem:f(x) = x6 − 3x4 − 4x2

Exercise:

Problem:f(x) = x5 − 5x3 + 4x

Solution:

(0, 0),   (1, 0),  (−1, 0),   (2, 0),   (−2, 0)

For the following exercises, use the Intermediate Value Theorem to confirm that the given
polynomial has at least one zero within the given interval.
Exercise:

Problem:f(x) = x3 − 9x,  between x = −4  and x = −2.

Exercise:

Problem:f(x) = x3 − 9x,  between x = 2  and x = 4.



Solution:

f (2) =– 10  and f (4) = 28. Sign change confirms.

Exercise:

Problem:f(x) = x5 − 2x,  between x = 1  and x = 2.

Exercise:

Problem:f(x) = −x4 + 4,  between x = 1  and x = 3 .

Solution:

f (1) = 3  and f (3) =– 77.  Sign change confirms.

Exercise:

Problem:f(x) = −2x3 − x,  between x =–1  and x = 1.

Exercise:

Problem:f(x) = x3 − 100x + 2,  between x = 0.01  and x = 0.1

Solution:

f (0.01) = 1.000001  and f (0.1) =– 7.999.  Sign change confirms.

For the following exercises, find the zeros and give the multiplicity of each.
Exercise:

Problem:f(x) = (x + 2)3(x − 3)2

Exercise:

Problem:f(x) = x2(2x + 3)5(x − 4)2

Solution:

0 with multiplicity 2, − 3
2  with multiplicity 5, 4 with multiplicity 2

Exercise:

Problem:f(x) = x3(x − 1)3 (x + 2)

Exercise:



Problem:f(x) = x2 (x2 + 4x + 4)

Solution:

0 with multiplicity 2, –2 with multiplicity 2

Exercise:

Problem:f(x) = (2x + 1)3 (9x2 − 6x + 1)

Exercise:

Problem:f(x) = (3x + 2)5 (x2 − 10x + 25)

Solution:

− 2
3 withmultiplicity 5, 5withmultiplicity 2

Exercise:

Problem:f(x) = x (4x2 − 12x + 9) (x2 + 8x + 16)

Exercise:

Problem:f(x) = x6 − x5 − 2x4

Solution:

0withmultiplicity 4, 2withmultiplicity 1, – 1withmultiplicity 1

Exercise:

Problem:f(x) = 3x4 + 6x3 + 3x2

Exercise:

Problem:f(x) = 4x5 − 12x4 + 9x3

Solution:

3
2  with multiplicity 2, 0 with multiplicity 3

Exercise:

Problem:f(x) = 2x4 (x3 − 4x2 + 4x)

Exercise:



Problem:f(x) = 4x4 (9x4 − 12x3 + 4x2)

Solution:

0withmultiplicity 6, 2
3 withmultiplicity 2

Graphical

For the following exercises, graph the polynomial functions. Note x- and y-intercepts,
multiplicity, and end behavior.
Exercise:

Problem:f (x) = (x + 3)2(x − 2)

Exercise:

Problem:g (x) = (x + 4)(x − 1)2

Solution:

x-intercepts, (1, 0) with multiplicity 2, (– 4, 0) with multiplicity 1, y- intercept (0, 4) . As
x → −∞, f(x) → −∞, as x → ∞, f(x) → ∞.

Exercise:

Problem:h (x) = (x − 1)3(x + 3)2

Exercise:

Problem:k (x) = (x − 3)3(x − 2)2



Solution:

x-intercepts (3, 0) with multiplicity 3, (2, 0) with multiplicity 2, y- intercept (0, – 108). As
x → −∞, f(x) → −∞, as x → ∞, f(x) → ∞.

Exercise:

Problem:m (x) = −2x (x − 1)(x + 3)

Exercise:

Problem:n (x) = −3x (x + 2)(x − 4)

Solution:

x-intercepts (0, 0), (– 2, 0), (4, 0) with multiplicity 1, y-intercept (0, 0). As x → −∞,
f(x) → ∞, as x → ∞, f(x) → −∞.



For the following exercises, use the graphs to write the formula for a polynomial function of least
degree.
Exercise:

Problem:

Exercise:

Problem:



Solution:

f(x) = − 2
9 (x − 3)(x + 1)(x + 3)

Exercise:

Problem:

Exercise:

Problem:



Solution:

f(x) = 1
4 (x + 2)2(x − 3)

Exercise:

Problem:

For the following exercises, use the graph to identify zeros and multiplicity.
Exercise:

Problem:



Solution:

–4, –2, 1, 3 with multiplicity 1

Exercise:

Problem:

Exercise:

Problem:



Solution:

–2, 3 each with multiplicity 2

Exercise:

Problem:

For the following exercises, use the given information about the polynomial graph to write the
equation.
Exercise:



Problem:Degree 3. Zeros at x = –2, x = 1, and x = 3. y-intercept at (0, – 4).

Solution:

f(x) = − 2
3
(x + 2)(x − 1)(x − 3)

Exercise:

Problem:Degree 3. Zeros at x = –5, x = –2,and x = 1. y-intercept at (0, 6)

Exercise:

Problem:

Degree 5. Roots of multiplicity 2 at x = 3  and x = 1  , and a root of multiplicity 1 at
x = –3.  y-intercept at (0, 9)

Solution:

f(x) = 1
3 (x − 3)2(x − 1)2(x + 3)

Exercise:

Problem:

Degree 4. Root of multiplicity 2 at x = 4, and a roots of multiplicity 1 at x = 1 and x = –2.
y-intercept at (0, –3).

Exercise:

Problem:

Degree 5. Double zero at x = 1, and triple zero at x = 3.  Passes through the point (2, 15).

Solution:

f(x) = −15(x − 1)2(x − 3)3

Exercise:

Problem:Degree 3. Zeros at x = 4,x = 3,and x = 2. y-intercept at (0,−24).

Exercise:

Problem:Degree 3. Zeros at x = −3, x = −2  and x = 1.  y-intercept at (0, 12).

Solution:

f(x) = −2 (x + 3) (x + 2) (x − 1)

Exercise:



Problem:

Degree 5. Roots of multiplicity 2 at x = −3  and x = 2  and a root of multiplicity 1 at
x = −2.

y-intercept at (0,  4).

Exercise:

Problem:

Degree 4. Roots of multiplicity 2 at x = 1
2 and roots of multiplicity 1 at x = 6 and x = −2.

y-intercept at (0,18).

Solution:

f(x) = − 3
2 (2x − 1)2 (x − 6) (x + 2)

Exercise:

Problem:Double zero at x = −3  and triple zero at x = 0.  Passes through the point (1, 32).

Technology

For the following exercises, use a calculator to approximate local minima and maxima or the
global minimum and maximum.
Exercise:

Problem:f(x) = x3 − x − 1

Solution:

local max (– .58, –.62),  local min (.58, –1.38)

Exercise:

Problem:f(x) = 2x3 − 3x − 1

Exercise:

Problem:f(x) = x4 + x

Solution:

global min (– .63, –.47)

Exercise:



Problem:f(x) = −x4 + 3x − 2

Exercise:

Problem:f(x) = x4 − x3 + 1

Solution:

global min (.75, .89)

Extensions

For the following exercises, use the graphs to write a polynomial function of least degree.
Exercise:

Problem:

Exercise:

Problem:



Solution:

f(x) = (x − 500)2(x + 200)

Exercise:

Problem:



Real-World Applications

For the following exercises, write the polynomial function that models the given situation.
Exercise:

Problem:

A rectangle has a length of 10 units and a width of 8 units. Squares of x  by x  units are cut
out of each corner, and then the sides are folded up to create an open box. Express the
volume of the box as a polynomial function in terms of x.

Solution:

f(x) = 4x3 − 36x2 + 80x

Exercise:

Problem:

Consider the same rectangle of the preceding problem. Squares of 2x  by 2x  units are cut out
of each corner. Express the volume of the box as a polynomial in terms of x.

Exercise:



Problem:

A square has sides of 12 units. Squares x  + 1  by x  + 1  units are cut out of each corner,
and then the sides are folded up to create an open box. Express the volume of the box as a
function in terms of x.

Solution:

f(x) = 4x3 − 36x2 + 60x + 100

Exercise:

Problem:

A cylinder has a radius of x + 2  units and a height of 3 units greater. Express the volume of
the cylinder as a polynomial function.

Exercise:

Problem:

A right circular cone has a radius of 3x + 6  and a height 3 units less. Express the volume of
the cone as a polynomial function. The volume of a cone is V = 1

3 πr2h  for radius r  and
height h.

Solution:

f(x) = π(9x3 + 45x2 + 72x + 36)

Glossary

global maximum
highest turning point on a graph; f(a)  where f(a) ≥ f(x)  for all x.

global minimum
lowest turning point on a graph; f(a)  where f(a) ≤ f(x)  for all x.

Intermediate Value Theorem
for two numbers a  and b  in the domain of f,  if a < b  and f (a) ≠ f (b),  then the function
f  takes on every value between f (a)  and f (b);  specifically, when a polynomial function
changes from a negative value to a positive value, the function must cross the x-axis

multiplicity
the number of times a given factor appears in the factored form of the equation of a
polynomial; if a polynomial contains a factor of the form (x − h)p, x = h  is a zero of
multiplicity p.



Dividing Polynomials
In this section, you will:

Use long division to divide polynomials.
Use synthetic division to divide polynomials.

The exterior of the Lincoln Memorial in Washington, D.C., is a large
rectangular solid with length 61.5 meters (m), width 40 m, and height 30 m.
[footnote] We can easily find the volume using elementary geometry.
National Park Service. "Lincoln Memorial Building Statistics."
http://www.nps.gov/linc/historyculture/lincoln-memorial-building-
statistics.htm. Accessed 4/3/2014
Equation:

Lincoln Memorial, Washington, D.C. (credit: Ron
Cogswell, Flickr)

V = l ⋅ w ⋅ h

   = 61.5 ⋅ 40 ⋅ 30

   = 73,800



So the volume is 73,800 cubic meters (m³).  Suppose we knew the volume,
length, and width. We could divide to find the height.
Equation:

As we can confirm from the dimensions above, the height is 30 m. We can
use similar methods to find any of the missing dimensions. We can also use
the same method if any or all of the measurements contain variable
expressions. For example, suppose the volume of a rectangular solid is
given by the polynomial 3x4 − 3x3 − 33x2 + 54x.  The length of the solid
is given by 3x;  the width is given byx− 2.  To find the height of the solid,
we can use polynomial division, which is the focus of this section.

Using Long Division to Divide Polynomials

We are familiar with the long division algorithm for ordinary arithmetic. We
begin by dividing into the digits of the dividend that have the greatest place
value. We divide, multiply, subtract, include the digit in the next place value
position, and repeat. For example, let’s divide 178 by 3 using long division.

Another way to look at the solution is as a sum of parts. This should look
familiar, since it is the same method used to check division in elementary
arithmetic.

h = V
l⋅w

   = 73,800
61.5⋅40

   = 30



Equation:

We call this the Division Algorithm and will discuss it more formally after
looking at an example.

Division of polynomials that contain more than one term has similarities to
long division of whole numbers. We can write a polynomial dividend as the
product of the divisor and the quotient added to the remainder. The terms of
the polynomial division correspond to the digits (and place values) of the
whole number division. This method allows us to divide two polynomials.
For example, if we were to divide 2x3 − 3x2 + 4x+ 5  byx+ 2  using the
long division algorithm, it would look like this:

We have found
Equation:

dividend = (divisor  ⋅  quotient) + remainder

178 = (3 ⋅ 59) + 1

= 177 + 1

= 178



2x3 − 3x2 + 4x+ 5

x+ 2
= 2x2 − 7x+ 18 −

31

x+ 2

or
Equation:

2x3 − 3x2 + 4x+ 5

x+ 2
= (x+ 2)(2x2 − 7x+ 18) − 31

We can identify the dividend, the divisor, the quotient, and the remainder.

Writing the result in this manner illustrates the Division Algorithm.

Note:
The Division Algorithm
The Division Algorithm states that, given a polynomial dividend f(x)  and
a non-zero polynomial divisor d(x)  where the degree of d(x)  is less than
or equal to the degree of f(x),  there exist unique polynomials q(x)  and
r(x)  such that
Equation:

f(x) = d(x)q(x) + r(x)

q(x)  is the quotient and r(x)  is the remainder. The remainder is either
equal to zero or has degree strictly less than d(x).
If r(x) = 0,  then d(x)  divides evenly into f(x).  This means that, in this
case, both d(x)  and q(x)  are factors of f(x).



Note: Given a polynomial and a binomial, use long division to divide
the polynomial by the binomial.

1. Set up the division problem.
2. Determine the first term of the quotient by dividing the leading term

of the dividend by the leading term of the divisor.
3. Multiply the answer by the divisor and write it below the like terms of

the dividend.
4. Subtract the bottom binomial from the top binomial.
5. Bring down the next term of the dividend.
6. Repeat steps 2–5 until reaching the last term of the dividend.
7. If the remainder is non-zero, express as a fraction using the divisor as

the denominator.

Example:
Exercise:

Problem:
Using Long Division to Divide a Second-Degree Polynomial

Divide 5x2 + 3x− 2  byx+ 1.

Solution:

The quotient is 5x− 2.  The remainder is 0. We write the result as



Equation:

5x2 + 3x− 2

x+ 1
= 5x− 2

or
Equation:

5x2 + 3x− 2 = (x+ 1) (5x− 2)

Analysis

This division problem had a remainder of 0. This tells us that the dividend
is divided evenly by the divisor, and that the divisor is a factor of the
dividend.

Example:
Exercise:

Problem:
Using Long Division to Divide a Third-Degree Polynomial

Divide 6x3 + 11x2 − 31x+ 15  by 3x− 2.

Solution:

There is a remainder of 1. We can express the result as:
Equation:



6x3 + 11x2 − 31x+ 15

3x− 2
= 2x2 + 5x− 7 +

1

3x− 2

Analysis

We can check our work by using the Division Algorithm to rewrite the
solution. Then multiply.
Equation:

(3x− 2)(2x2 + 5x− 7) + 1 = 6x3 + 11x2 − 31x+ 15

Notice, as we write our result,

the dividend is 6x3 + 11x2 − 31x+ 15
the divisor is 3x− 2
the quotient is 2x2 + 5x− 7
the remainder is 1

Note:
Exercise:

Problem:Divide 16x3 − 12x2 + 20x− 3  by 4x+ 5.

Solution:

4x2 − 8x+ 15 −
78

4x+ 5

Using Synthetic Division to Divide Polynomials



As we’ve seen, long division of polynomials can involve many steps and be
quite cumbersome. Synthetic division is a shorthand method of dividing
polynomials for the special case of dividing by a linear factor whose
leading coefficient is 1.

To illustrate the process, recall the example at the beginning of the section.

Divide 2x3 − 3x2 + 4x+ 5  byx+ 2  using the long division algorithm.

The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the variables but,
instead, line up their coefficients in columns under the division sign and
also eliminate the partial products, we already have a simpler version of the
entire problem.

Synthetic division carries this simplification even a few more steps.
Collapse the table by moving each of the rows up to fill any vacant spots.
Also, instead of dividing by 2, as we would in division of whole numbers,
then multiplying and subtracting the middle product, we change the sign of



the “divisor” to –2, multiply and add. The process starts by bringing down
the leading coefficient.

We then multiply it by the “divisor” and add, repeating this process column
by column, until there are no entries left. The bottom row represents the
coefficients of the quotient; the last entry of the bottom row is the
remainder. In this case, the quotient is 2x²– 7x+ 18  and the remainder is
–31.  The process will be made more clear in [link].

Note:
Synthetic Division
Synthetic division is a shortcut that can be used when the divisor is a
binomial in the formx− k.  In synthetic division, only the coefficients
are used in the division process.

Note:
Given two polynomials, use synthetic division to divide.

1. Write k  for the divisor.
2. Write the coefficients of the dividend.
3. Bring the lead coefficient down.
4. Multiply the lead coefficient by k.  Write the product in the next

column.
5. Add the terms of the second column.
6. Multiply the result by k.  Write the product in the next column.
7. Repeat steps 5 and 6 for the remaining columns.
8. Use the bottom numbers to write the quotient. The number in the last

column is the remainder and has degree 0, the next number from the
right has degree 1, the next number from the right has degree 2, and
so on.



Example:
Exercise:

Problem:
Using Synthetic Division to Divide a Second-Degree Polynomial

Use synthetic division to divide 5x2 − 3x− 36  byx− 3.

Solution:

Begin by setting up the synthetic division. Write k  and the
coefficients.

Bring down the lead coefficient. Multiply the lead coefficient by k.

Continue by adding the numbers in the second column. Multiply the
resulting number by k.  Write the result in the next column. Then add
the numbers in the third column.

The result is 5x+ 12.  The remainder is 0. Sox− 3  is a factor of the
original polynomial.

Analysis



Just as with long division, we can check our work by multiplying the
quotient by the divisor and adding the remainder.

(x− 3)(5x+ 12) + 0 = 5x2 − 3x− 36

Example:
Exercise:

Problem:
Using Synthetic Division to Divide a Third-Degree Polynomial

Use synthetic division to divide 4x3 + 10x2 − 6x− 20  byx+ 2.

Solution:

The binomial divisor isx+ 2  so k = −2.  Add each column, multiply
the result by –2, and repeat until the last column is reached.

The result is 4x2 + 2x− 10.  The remainder is 0. Thus,x+ 2  is a
factor of 4x3 + 10x2 − 6x− 20.

Analysis

The graph of the polynomial function f(x) = 4x3 + 10x2 − 6x− 20  in
[link] shows a zero atx = k = −2.  This confirms thatx+ 2  is a factor of
4x3 + 10x2 − 6x− 20.



Example:
Exercise:



Problem:
Using Synthetic Division to Divide a Fourth-Degree Polynomial

Use synthetic division to divide − 9x4 + 10x3 + 7x2 − 6  byx− 1.

Solution:

Notice there is no x-term. We will use a zero as the coefficient for that
term. 
 

The result is − 9x3 + x2 + 8x+ 8 + 2
x−1 .

Note:
Exercise:

Problem:

Use synthetic division to divide 3x4 + 18x3 − 3x+ 40  byx+ 7.

Solution:

3x3 − 3x2 + 21x− 150 + 1,090
x+7

Using Polynomial Division to Solve Application Problems

Polynomial division can be used to solve a variety of application problems
involving expressions for area and volume. We looked at an application at



the beginning of this section. Now we will solve that problem in the
following example.

Example:
Exercise:

Problem:
Using Polynomial Division in an Application Problem

The volume of a rectangular solid is given by the polynomial
3x4 − 3x3 − 33x2 + 54x.  The length of the solid is given by 3x
and the width is given byx− 2.  Find the height of the solid.

Solution:

There are a few ways to approach this problem. We need to divide the
expression for the volume of the solid by the expressions for the
length and width. Let us create a sketch as in [link].

We can now write an equation by substituting the known values into
the formula for the volume of a rectangular solid.
Equation:

To solve forh, first divide both sides by 3x.
Equation:

V = l ⋅ w ⋅ h

3x4 − 3x3 − 33x2 + 54x = 3x ⋅ (x− 2) ⋅ h

( )



Now solve forh  using synthetic division.
Equation:

h =
x3 − x2 − 11x+ 18

x− 2

Equation:

The quotient isx2 + x− 9  and the remainder is 0. The height of the
solid isx2 + x− 9.

Note:
Exercise:

Problem:

The area of a rectangle is given by 3x3 + 14x2 − 23x+ 6.  The width
of the rectangle is given byx+ 6.  Find an expression for the length
of the rectangle.

Solution:

3x2 − 4x+ 1

3x⋅(x−2)⋅h
3x = 3x4−3x3−33x2+54x

3x

(x− 2)h = x3 − x2 − 11x+ 18

2
1 −1 −11 18

2 2 −18

   1    1   − 9     0



Note:
Access these online resources for additional instruction and practice with
polynomial division.

Dividing a Trinomial by a Binomial Using Long Division
Dividing a Polynomial by a Binomial Using Long Division
Ex 2: Dividing a Polynomial by a Binomial Using Synthetic Division
Ex 4: Dividing a Polynomial by a Binomial Using Synthetic Division

Key Equations

Division Algorithm f(x) = d(x)q(x) + r(x) where q(x) ≠ 0

Key Concepts

Polynomial long division can be used to divide a polynomial by any
polynomial with equal or lower degree. See [link] and [link].
The Division Algorithm tells us that a polynomial dividend can be
written as the product of the divisor and the quotient added to the
remainder.
Synthetic division is a shortcut that can be used to divide a polynomial
by a binomial in the formx− k.  See [link], [link], and [link].
Polynomial division can be used to solve application problems,
including area and volume. See [link].

Section Exercises

Verbal

http://openstaxcollege.org/l/dividetribild
http://openstaxcollege.org/l/dividepolybild
http://openstaxcollege.org/l/dividepolybisd2
http://openstaxcollege.org/l/dividepolybisd4


Exercise:

Problem:

If division of a polynomial by a binomial results in a remainder of
zero, what can be conclude?

Solution:

The binomial is a factor of the polynomial.

Exercise:

Problem:

If a polynomial of degreen  is divided by a binomial of degree 1, what
is the degree of the quotient?

Algebraic

For the following exercises, use long division to divide. Specify the
quotient and the remainder.
Exercise:

Problem:(x2 + 5x− 1) ÷ (x− 1)

Solution:

x+ 6 + 5
x−1 , quotient:x+ 6, remainder: 5

Exercise:

Problem:(2x2 − 9x− 5) ÷ (x− 5)

Exercise:

Problem:(3x2 + 23x+ 14) ÷ (x+ 7)



Solution:

3x+ 2, quotient: 3x+ 2, remainder: 0

Exercise:

Problem:(4x2 − 10x+ 6) ÷ (4x+ 2)

Exercise:

Problem:(6x2 − 25x− 25) ÷ (6x+ 5)

Solution:

x− 5, quotient:x− 5, remainder: 0

Exercise:

Problem:(−x2 − 1) ÷ (x+ 1)

Exercise:

Problem:(2x2 − 3x+ 2) ÷ (x+ 2)

Solution:

2x− 7 + 16
x+2

, quotient: 2x− 7, remainder: 16

Exercise:

Problem:(x3 − 126) ÷ (x− 5)

Exercise:

Problem:(3x2 − 5x+ 4) ÷ (3x+ 1)

Solution:



x− 2 + 6
3x+1 , quotient:x− 2, remainder: 6

Exercise:

Problem:(x3 − 3x2 + 5x− 6) ÷ (x− 2)

Exercise:

Problem:(2x3 + 3x2 − 4x+ 15) ÷ (x+ 3)

Solution:

2x2 − 3x+ 5, quotient: 2x2 − 3x+ 5, remainder: 0

For the following exercises, use synthetic division to find the quotient.
Exercise:

Problem:(3x3 − 2x2 + x− 4) ÷ (x+ 3)

Exercise:

Problem:(2x3 − 6x2 − 7x+ 6) ÷ (x− 4)

Solution:

2x2 + 2x+ 1 + 10
x−4

Exercise:

Problem:(6x3 − 10x2 − 7x− 15) ÷ (x+ 1)

Exercise:

Problem:(4x3 − 12x2 − 5x− 1) ÷ (2x+ 1)

Solution:



2x2 − 7x+ 1 − 2
2x+1

Exercise:

Problem:(9x3 − 9x2 + 18x+ 5) ÷ (3x− 1)

Exercise:

Problem:(3x3 − 2x2 + x− 4) ÷ (x+ 3)

Solution:

3x2 − 11x+ 34 − 106
x+3

Exercise:

Problem:(−6x3 + x2 − 4) ÷ (2x− 3)

Exercise:

Problem:(2x3 + 7x2 − 13x− 3) ÷ (2x− 3)

Solution:

x2 + 5x+ 1

Exercise:

Problem:(3x3 − 5x2 + 2x+ 3) ÷ (x+ 2)

Exercise:

Problem:(4x3 − 5x2 + 13) ÷ (x+ 4)

Solution:

4x2 − 21x+ 84 − 323
x+4



Exercise:

Problem:(x3 − 3x+ 2) ÷ (x+ 2)

Exercise:

Problem:(x3 − 21x2 + 147x− 343) ÷ (x− 7)

Solution:

x2 − 14x+ 49

Exercise:

Problem:(x3 − 15x2 + 75x− 125) ÷ (x− 5)

Exercise:

Problem:(9x3 − x+ 2) ÷ (3x− 1)

Solution:

3x2 + x+ 2
3x−1

Exercise:

Problem:(6x3 − x2 + 5x+ 2) ÷ (3x+ 1)

Exercise:

Problem:(x4 + x3 − 3x2 − 2x+ 1) ÷ (x+ 1)

Solution:

x3 − 3x+ 1

Exercise:



Problem:(x4 − 3x2 + 1) ÷ (x− 1)

Exercise:

Problem:(x4 + 2x3 − 3x2 + 2x+ 6) ÷ (x+ 3)

Solution:

x3 − x2 + 2

Exercise:

Problem:(x4 − 10x3 + 37x2 − 60x+ 36) ÷ (x− 2)

Exercise:

Problem:(x4 − 8x3 + 24x2 − 32x+ 16) ÷ (x− 2)

Solution:

x3 − 6x2 + 12x− 8

Exercise:

Problem:(x4 + 5x3 − 3x2 − 13x+ 10) ÷ (x+ 5)

Exercise:

Problem:(x4 − 12x3 + 54x2 − 108x+ 81) ÷ (x− 3)

Solution:

x3 − 9x2 + 27x− 27

Exercise:



Problem:(4x4 − 2x3 − 4x+ 2) ÷ (2x− 1)

Exercise:

Problem:(4x4 + 2x3 − 4x2 + 2x+ 2) ÷ (2x+ 1)

Solution:

2x3 − 2x+ 2

For the following exercises, use synthetic division to determine whether the
first expression is a factor of the second. If it is, indicate the factorization.
Exercise:

Problem:x− 2, 4x3 − 3x2 − 8x+ 4

Exercise:

Problem:x− 2, 3x4 − 6x3 − 5x+ 10

Solution:

Yes (x− 2)(3x3 − 5)

Exercise:

Problem:x+ 3, − 4x3 + 5x2 + 8

Exercise:

Problem:x− 2, 4x4 − 15x2 − 4

Solution:

Yes (x− 2)(4x3 + 8x2 + x+ 2)

Exercise:



Problem:x− 1
2 , 2x

4 − x3 + 2x− 1

Exercise:

Problem:x+ 1
3 , 3x

4 + x3 − 3x+ 1

Solution:

No

Graphical

For the following exercises, use the graph of the third-degree polynomial
and one factor to write the factored form of the polynomial suggested by the
graph. The leading coefficient is one.
Exercise:

Problem:Factor isx2 − x+ 3

Exercise:



Problem:Factor is (x2 + 2x+ 4)

Solution:

(x− 1)(x2 + 2x+ 4)

Exercise:

Problem:Factor isx2 + 2x+ 5

Exercise:



Problem:Factor isx2 + x+ 1

Solution:

(x− 5)(x2 + x+ 1)

Exercise:

Problem:Factor isx2 + 2x+ 2



For the following exercises, use synthetic division to find the quotient and
remainder.
Exercise:

Problem: 4x3−33
x−2

Solution:

Quotient: 4x2 + 8x+ 16, remainder: − 1

Exercise:

Problem: 2x3+25
x+3

Exercise:

Problem: 3x3+2x−5
x−1

Solution:

Quotient: 3x2 + 3x+ 5, remainder: 0



Exercise:

Problem: −4x3−x2−12
x+4

Exercise:

Problem: x4−22
x+2

Solution:

Quotient:x3 − 2x2 + 4x− 8, remainder: − 6

Technology

For the following exercises, use a calculator with CAS to answer the
questions.
Exercise:

Problem:

Consider xk−1
x−1

with k = 1,  2,  3.What do you expect the result to be if
k = 4?

Exercise:

Problem:

Consider xk+1
x+1 for k = 1,  3,  5.What do you expect the result to be if

k = 7?

Solution:

x6 − x5 + x4 − x3 + x2 − x+ 1

Exercise:



Problem:

Consider x4−k4

x−k
for k = 1,  2,  3.What do you expect the result to be if

k = 4?

Exercise:

Problem:

Consider xk

x+1
with k = 1,  2,  3.What do you expect the result to be if

k = 4?

Solution:

x3 − x2 + x− 1 + 1
x+1

Exercise:

Problem:

Consider xk

x−1 with k = 1,  2,  3.What do you expect the result to be if
k = 4?

Extensions

For the following exercises, use synthetic division to determine the quotient
involving a complex number.
Exercise:

Problem: x+1
x−i

Solution:

1 + 1+i
x−i

Exercise:



Problem: x2+1
x−i

Exercise:

Problem: x+1
x+i

Solution:

1 + 1−i
x+i

Exercise:

Problem: x2+1
x+i

Exercise:

Problem: x3+1
x−i

Solution:

x2 − ix− 1 + 1−i
x−i

Real-World Applications

For the following exercises, use the given length and area of a rectangle to
express the width algebraically.
Exercise:

Problem:Length isx+ 5, area is 2x2 + 9x− 5.

Exercise:

Problem:Length is 2x  +  5, area is 4x3 + 10x2 + 6x+ 15



Solution:

2x2 + 3

Exercise:

Problem:Length is 3x– 4, area is 6x4 − 8x3 + 9x2 − 9x− 4

For the following exercises, use the given volume of a box and its length
and width to express the height of the box algebraically.
Exercise:

Problem:

Volume is 12x3 + 20x2 − 21x− 36, length is 2x+ 3, width is
3x− 4.

Solution:

2x+ 3

Exercise:

Problem:

Volume is 18x3 − 21x2 − 40x+ 48, length is 3x– 4,  width is 3x– 4.

Exercise:

Problem:

Volume is 10x3 + 27x2 + 2x− 24, length is 5x– 4,  width is 2x+ 3.

Solution:

x+ 2

Exercise:



Problem:

Volume is 10x3 + 30x2 − 8x− 24, length is 2, width isx+ 3.

For the following exercises, use the given volume and radius of a cylinder
to express the height of the cylinder algebraically.
Exercise:

Problem:Volume isπ(25x3 − 65x2 − 29x− 3), radius is 5x+ 1.

Solution:

x− 3

Exercise:

Problem:Volume isπ(4x3 + 12x2 − 15x− 50), radius is 2x+ 5.

Exercise:

Problem:

Volume isπ(3x4 + 24x3 + 46x2 − 16x− 32), radius isx+ 4.

Solution:

3x2 − 2

Glossary

Division Algorithm
given a polynomial dividend f(x)  and a non-zero polynomial divisor
d(x)  where the degree of d(x)  is less than or equal to the degree of
f(x),  there exist unique polynomials q(x)  and r(x)  such that
f(x) = d(x)q(x) + r(x)  where q(x)  is the quotient and r(x)  is the
remainder. The remainder is either equal to zero or has degree strictly
less than d(x).



synthetic division
a shortcut method that can be used to divide a polynomial by a
binomial of the formx− k



Zeros of Polynomial Functions
In this section, you will:

Evaluate a polynomial using the Remainder Theorem.
Use the Factor Theorem to solve a polynomial equation.
Use the Rational Zero Theorem to find rational zeros.
Find zeros of a polynomial function.
Use the Linear Factorization Theorem to find polynomials with given
zeros.
Use Descartes’ Rule of Signs.
Solve real-world applications of polynomial equations.

A new bakery offers decorated sheet cakes for children’s birthday parties
and other special occasions. The bakery wants the volume of a small cake
to be 351 cubic inches. The cake is in the shape of a rectangular solid. They
want the length of the cake to be four inches longer than the width of the
cake and the height of the cake to be one-third of the width. What should
the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic
equation for the volume of the cake. In this section, we will discuss a
variety of tools for writing polynomial functions and solving polynomial
equations.

Evaluating a Polynomial Using the Remainder Theorem

In the last section, we learned how to divide polynomials. We can now use
polynomial division to evaluate polynomials using the Remainder
Theorem. If the polynomial is divided byx– k, the remainder may be
found quickly by evaluating the polynomial function at k, that is, f (k)
Let’s walk through the proof of the theorem.

Recall that the Division Algorithm states that, given a polynomial dividend
f(x) and a non-zero polynomial divisor d(x) where the degree of d(x) is
less than or equal to the degree of f(x), there exist unique polynomials
q(x) and r(x) such that
Equation:



f(x) = d(x)q(x) + r(x)

If the divisor, d(x), isx − k, this takes the form
Equation:

f(x) = (x − k)q(x) + r

Since the divisorx − k is linear, the remainder will be a constant, r. And, if
we evaluate this forx = k, we have
Equation:

In other words, f(k) is the remainder obtained by dividing f(x) byx − k.

Note:
The Remainder Theorem
If a polynomial f(x) is divided byx − k, then the remainder is the value
f(k).

Note:
Given a polynomial function f,evaluate f (x) atx = k using the
Remainder Theorem.

1. Use synthetic division to divide the polynomial byx − k.
2. The remainder is the value f(k).

f(k) = (k − k)q(k) + r

        = 0 ⋅ q(k) + r

        = r



Example:
Exercise:

Problem:
Using the Remainder Theorem to Evaluate a Polynomial

Use the Remainder Theorem to evaluate
f(x) = 6x4 − x3 − 15x2 + 2x − 7  atx = 2.

Solution:

To find the remainder using the Remainder Theorem, use synthetic
division to divide the polynomial byx − 2.
Equation:

The remainder is 25. Therefore, f(2) = 25.

Analysis

We can check our answer by evaluating f(2).
Equation:

Note:

2
6 −1 −15 2 −7

12   22 14 32

   6 11     7 16 25

f(2) = 6(2)4 − (2)3 − 15(2)2 + 2(2) − 7

        = 25

f(x) = 6x4 − x3 − 15x2 + 2x − 7



Exercise:

Problem:

Use the Remainder Theorem to evaluate
f(x) = 2x5 − 3x4 − 9x3 + 8x2 + 2  atx = −3.

Solution:

f(−3) = −412

Using the Factor Theorem to Solve a Polynomial Equation

The Factor Theorem is another theorem that helps us analyze polynomial
equations. It tells us how the zeros of a polynomial are related to the
factors. Recall that the Division Algorithm tells us
Equation:

f(x) = (x − k)q(x) + r.

If k  is a zero, then the remainder r  is f(k) = 0  and
f(x) = (x − k)q(x) + 0  or f(x) = (x − k)q(x).

Notice, written in this form,x − k is a factor of f(x). We can conclude if k
is a zero of f(x), thenx − k is a factor off(x).

Similarly, ifx − k  is a factor of f(x),  then the remainder of the Division
Algorithm f(x) = (x − k)q(x) + r  is 0. This tells us that k  is a zero.

This pair of implications is the Factor Theorem. As we will soon see, a
polynomial of degreen  in the complex number system will haven  zeros.
We can use the Factor Theorem to completely factor a polynomial into the
product ofn  factors. Once the polynomial has been completely factored,
we can easily determine the zeros of the polynomial.



Note:
The Factor Theorem
According to the Factor Theorem, k  is a zero of f(x)  if and only if
(x − k)  is a factor of f(x).

Note:
Given a factor and a third-degree polynomial, use the Factor Theorem
to factor the polynomial.

1. Use synthetic division to divide the polynomial by (x − k).
2. Confirm that the remainder is 0.
3. Write the polynomial as the product of (x − k) and the quadratic

quotient.
4. If possible, factor the quadratic.
5. Write the polynomial as the product of factors.

Example:
Exercise:

Problem:
Using the Factor Theorem to Solve a Polynomial Equation

Show that (x + 2)  is a factor ofx3 − 6x2 − x + 30. Find the
remaining factors. Use the factors to determine the zeros of the
polynomial.

Solution:

We can use synthetic division to show that (x + 2) is a factor of the
polynomial. 
Equation:



The remainder is zero, so (x + 2) is a factor of the polynomial. We
can use the Division Algorithm to write the polynomial as the product
of the divisor and the quotient:
Equation:

(x + 2)(x2 − 8x + 15)

We can factor the quadratic factor to write the polynomial as
Equation:

(x + 2)(x − 3)(x − 5)

By the Factor Theorem, the zeros ofx3 − 6x2 − x + 30 are –2, 3,
and 5.

Note:
Exercise:

Problem:

Use the Factor Theorem to find the zeros of
f(x) = x3 + 4x2 − 4x − 16  given that(x − 2) is a factor of the
polynomial.

Solution:

The zeros are 2, –2, and –4.

−2 1 −6 −1 30

−2 16 −30

      1 −8 15     0



Using the Rational Zero Theorem to Find Rational Zeros

Another use for the Remainder Theorem is to test whether a rational
number is a zero for a given polynomial. But first we need a pool of rational
numbers to test. The Rational Zero Theorem helps us to narrow down the
number of possible rational zeros using the ratio of the factors of the
constant term and factors of the leading coefficient of the polynomial

Consider a quadratic function with two zeros,x = 2
5  andx = 3

4 .  By the
Factor Theorem, these zeros have factors associated with them. Let us set
each factor equal to 0, and then construct the original quadratic function
absent its stretching factor.

Notice that two of the factors of the constant term, 6, are the two
numerators from the original rational roots: 2 and 3. Similarly, two of the
factors from the leading coefficient, 20, are the two denominators from the
original rational roots: 5 and 4.

We can infer that the numerators of the rational roots will always be factors
of the constant term and the denominators will be factors of the leading
coefficient. This is the essence of the Rational Zero Theorem; it is a means
to give us a pool of possible rational zeros.

Note:
The Rational Zero Theorem
The Rational Zero Theorem states that, if the polynomial
f(x) = anx

n + an−1x
n−1 + ... + a1x + a0 has integer coefficients, then

every rational zero of f(x)  has the form p

q
where p is a factor of the

constant term a0 and q is a factor of the leading coefficient an.



When the leading coefficient is 1, the possible rational zeros are the factors
of the constant term.

Note:
Given a polynomial function f(x),use the Rational Zero Theorem to
find rational zeros.

1. Determine all factors of the constant term and all factors of the
leading coefficient.

2. Determine all possible values of p

q
, where p is a factor of the constant

term and q is a factor of the leading coefficient. Be sure to include
both positive and negative candidates.

3. Determine which possible zeros are actual zeros by evaluating each
case of f( p

q
).

Example:
Exercise:

Problem:
Listing All Possible Rational Zeros

List all possible rational zeros of f(x) = 2x4 − 5x3 + x2 − 4.

Solution:

The only possible rational zeros of f(x)  are the quotients of the
factors of the last term, –4, and the factors of the leading coefficient,
2.

The constant term is –4; the factors of –4 are p = ±1, ±2, ±4.

The leading coefficient is 2; the factors of 2 are q = ±1, ±2.



If any of the four real zeros are rational zeros, then they will be of one
of the following factors of –4 divided by one of the factors of 2.
Equation:

Note that 2
2

= 1  and 4
2

= 2, which have already been listed. So we
can shorten our list.
Equation:

p

q
=

Factors of the last

Factors of the first
= ±1, ±2, ±4, ±

1

2

Example:
Exercise:

Problem:
Using the Rational Zero Theorem to Find Rational Zeros

Use the Rational Zero Theorem to find the rational zeros of
f(x) = 2x3 + x2 − 4x + 1.

Solution:

The Rational Zero Theorem tells us that if p

q
is a zero of f(x),  then p

is a factor of 1 and q is a factor of 2.
Equation:

p

q
= ± 1

1 , ± 1
2      p

q
= ± 2

1 , ± 2
2      p

q
= ± 4

1 , ± 4
2

p

q
= factor of constant term

factor of leading coefficient

    = factor of 1
factor of 2



The factors of 1 are±1 and the factors of 2 are±1 and±2. The
possible values for p

q
are±1 and ± 1

2 . These are the possible rational
zeros for the function. We can determine which of the possible zeros
are actual zeros by substituting these values forx in f(x).
Equation:

Of those, −1, − 1
2 ,  and  1

2 are not zeros of f(x). 1 is the only
rational zero of f(x).

Note:
Exercise:

Problem:

Use the Rational Zero Theorem to find the rational zeros of
f(x) = x3 − 5x2 + 2x + 1.

Solution:

There are no rational zeros.

Finding the Zeros of Polynomial Functions

The Rational Zero Theorem helps us to narrow down the list of possible
rational zeros for a polynomial function. Once we have done this, we can

  f(−1) = 2(−1)3 + (−1)2 − 4(−1) + 1 = 4

      f(1) = 2(1)3 + (1)2 − 4(1) + 1 = 0

   f (− 1
2 ) = 2(− 1

2 )
3

+ (− 1
2 )

2
− 4 (− 1

2 ) + 1 = 3

      f ( 1
2 ) = 2( 1

2 )
3

+ ( 1
2 )

2
− 4 ( 1

2 ) + 1 = − 1
2



use synthetic division repeatedly to determine all of the zeros of a
polynomial function.

Note:
Given a polynomial function f,use synthetic division to find its zeros.

1. Use the Rational Zero Theorem to list all possible rational zeros of the
function.

2. Use synthetic division to evaluate a given possible zero by
synthetically dividing the candidate into the polynomial. If the
remainder is 0, the candidate is a zero. If the remainder is not zero,
discard the candidate.

3. Repeat step two using the quotient found with synthetic division. If
possible, continue until the quotient is a quadratic.

4. Find the zeros of the quadratic function. Two possible methods for
solving quadratics are factoring and using the quadratic formula.

Example:
Exercise:

Problem:
Finding the Zeros of a Polynomial Function with Repeated Real
Zeros

Find the zeros of f(x) = 4x3 − 3x − 1.

Solution:

The Rational Zero Theorem tells us that if p

q
is a zero of f(x), then p

is a factor of –1 and q is a factor of 4.
Equation:



The factors of – 1  are±1  and the factors of 4  are±1, ±2, and ±4.
The possible values for p

q
are±1, ± 1

2 , and ± 1
4 .  These are the

possible rational zeros for the function. We will use synthetic division
to evaluate each possible zero until we find one that gives a remainder
of 0. Let’s begin with 1.
Equation:

Dividing by (x − 1)  gives a remainder of 0, so 1 is a zero of the
function. The polynomial can be written as
Equation:

(x − 1)(4x2 + 4x + 1).

The quadratic is a perfect square. f(x)  can be written as
Equation:

(x − 1)(2x + 1)2.

We already know that 1 is a zero. The other zero will have a
multiplicity of 2 because the factor is squared. To find the other zero,
we can set the factor equal to 0.
Equation:

p

q
= factor of constant term

factor of leading coefficient

    = factor of –1
factor of 4

1 4 0 −3 −1

4 4 1

   4  4   1    0



The zeros of the function are 1 and − 1
2 with multiplicity 2.

Analysis

Look at the graph of the function f  in [link]. Notice, atx = −0.5, the
graph bounces off the x-axis, indicating the even multiplicity (2,4,6…) for
the zero − 0.5.  Atx = 1, the graph crosses the x-axis, indicating the odd
multiplicity (1,3,5…) for the zerox = 1.

Using the Fundamental Theorem of Algebra

Now that we can find rational zeros for a polynomial function, we will look
at a theorem that discusses the number of complex zeros of a polynomial
function. The Fundamental Theorem of Algebra tells us that every
polynomial function has at least one complex zero. This theorem forms the
foundation for solving polynomial equations.

Suppose f is a polynomial function of degree four, and f(x) = 0. The
Fundamental Theorem of Algebra states that there is at least one complex

2x + 1 = 0

         x = − 1
2



solution, call it c1. By the Factor Theorem, we can write f(x) as a product
ofx − c1 and a polynomial quotient. Sincex − c1 is linear, the polynomial
quotient will be of degree three. Now we apply the Fundamental Theorem
of Algebra to the third-degree polynomial quotient. It will have at least one
complex zero, call it c2. So we can write the polynomial quotient as a
product ofx − c2 and a new polynomial quotient of degree two. Continue
to apply the Fundamental Theorem of Algebra until all of the zeros are
found. There will be four of them and each one will yield a factor of f(x).

Note:
The Fundamental Theorem of Algebra states that, if f(x) is a polynomial
of degree n > 0, then f(x) has at least one complex zero.
We can use this theorem to argue that, if f(x) is a polynomial of degree
n > 0, and a  is a non-zero real number, then f(x) has exactlyn  linear
factors
Equation:

f(x) = a(x − c1)(x − c2)...(x − cn)

where c1, c2, ..., cn are complex numbers. Therefore, f(x) hasn roots if we
allow for multiplicities.

Note:
Does every polynomial have at least one imaginary zero?
No. A complex number is not necessarily imaginary. Real numbers are also
complex numbers.

Example:
Exercise:

Problem:
Finding the Zeros of a Polynomial Function with Complex Zeros



Find the zeros of f(x) = 3x3 + 9x2 + x + 3.

Solution:

The Rational Zero Theorem tells us that if p

q
is a zero of f(x), then p

is a factor of 3 and q is a factor of 3.
Equation:

The factors of 3 are±1 and ±3. The possible values for p

q
, and

therefore the possible rational zeros for the function, are 
±3, ±1, and  ± 1

3 . We will use synthetic division to evaluate each
possible zero until we find one that gives a remainder of 0. Let’s begin
with –3.
Equation:

Dividing by (x + 3) gives a remainder of 0, so –3 is a zero of the
function. The polynomial can be written as
Equation:

(x + 3)(3x2 + 1)

We can then set the quadratic equal to 0 and solve to find the other
zeros of the function.
Equation:

p

q
= factor of constant term

factor of leading coefficient

    = factor of 3
factor of 3

−3 3 9 1 3

−9 0 −3

     3    0  1   0



The zeros off(x) are –3 and ± i√3
3

.

Analysis

Look at the graph of the function f in [link]. Notice that, atx = −3, the
graph crosses the x-axis, indicating an odd multiplicity (1) for the zero
x =– 3. Also note the presence of the two turning points. This means that,
since there is a 3  degree polynomial, we are looking at the maximum
number of turning points. So, the end behavior of increasing without bound
to the right and decreasing without bound to the left will continue. Thus,
all the x-intercepts for the function are shown. So either the multiplicity of
x = −3 is 1 and there are two complex solutions, which is what we found,
or the multiplicity atx = −3 is three. Either way, our result is correct.

Note:
Exercise:

3x2 + 1 = 0

       x2 = − 1
3

        x = ±√− 1
3 = ± i√3

3

rd



Problem:Find the zeros of f(x) = 2x3 + 5x2 − 11x + 4.

Solution:

The zeros are –4,  1
2 ,  and 1.

Using the Linear Factorization Theorem to Find Polynomials
with Given Zeros

A vital implication of the Fundamental Theorem of Algebra, as we stated
above, is that a polynomial function of degreen  will haven zeros in the set
of complex numbers, if we allow for multiplicities. This means that we can
factor the polynomial function inton  factors. The Linear Factorization
Theorem tells us that a polynomial function will have the same number of
factors as its degree, and that each factor will be in the form (x − c), where
c is a complex number.

Let f  be a polynomial function with real coefficients, and suppose
a + bi, b ≠ 0,  is a zero of f(x).  Then, by the Factor Theorem,
x − (a + bi)  is a factor of f(x).  For f  to have real coefficients,
x − (a − bi)  must also be a factor of f(x).  This is true because any factor
other thanx − (a − bi),  when multiplied byx − (a + bi),  will leave
imaginary components in the product. Only multiplication with conjugate
pairs will eliminate the imaginary parts and result in real coefficients. In
other words, if a polynomial function f  with real coefficients has a complex
zero a + bi,  then the complex conjugate a − bi  must also be a zero of
f(x). This is called the Complex Conjugate Theorem.

Note:
Complex Conjugate Theorem



According to the Linear Factorization Theorem, a polynomial function
will have the same number of factors as its degree, and each factor will be
in the form (x − c),  where c  is a complex number.
If the polynomial function f  has real coefficients and a complex zero in the
form a + bi,  then the complex conjugate of the zero, a − bi,  is also a
zero.

Note:
Given the zeros of a polynomial function f and a point (c, f(c)) on the
graph of f, use the Linear Factorization Theorem to find the
polynomial function.

1. Use the zeros to construct the linear factors of the polynomial.
2. Multiply the linear factors to expand the polynomial.
3. Substitute (c, f (c)) into the function to determine the leading

coefficient.
4. Simplify.

Example:
Exercise:

Problem:
Using the Linear Factorization Theorem to Find a Polynomial
with Given Zeros

Find a fourth degree polynomial with real coefficients that has zeros
of –3, 2, i, such that f(−2) = 100.

Solution:

Becausex = i  is a zero, by the Complex Conjugate Theoremx =– i
is also a zero. The polynomial must have factors of
(x + 3), (x − 2), (x − i), and (x + i). Since we are looking for a



degree 4 polynomial, and now have four zeros, we have all four
factors. Let’s begin by multiplying these factors.
Equation:

We need to find a to ensure f(– 2) = 100. Substitutex =– 2  and
f(2) = 100  into f(x).
Equation:

So the polynomial function is
Equation:

f(x) = −5(x4 + x3 − 5x2 + x − 6)

or
Equation:

f(x) = −5x4 − 5x3 + 25x2 − 5x + 30

Analysis

We found that both i and − iwere zeros, but only one of these zeros
needed to be given. If i is a zero of a polynomial with real coefficients, then
− imust also be a zero of the polynomial because − i is the complex

conjugate of i.

f(x) = a(x + 3)(x − 2)(x − i)(x + i)

f(x) = a(x2 + x − 6)(x2 + 1)

f(x) = a(x4 + x3 − 5x2 + x − 6)

100 = a((−2)4 + (−2)3 − 5(−2)2 + (−2) − 6)

100 = a(−20)

−5 = a



Note:
If 2 + 3i  were given as a zero of a polynomial with real coefficients,
would 2 − 3i  also need to be a zero?
Yes. When any complex number with an imaginary component is given as a
zero of a polynomial with real coefficients, the conjugate must also be a
zero of the polynomial.

Note:
Exercise:

Problem:

Find a third degree polynomial with real coefficients that has zeros of
5 and − 2i such that f(1) = 10.

Solution:

f(x) = − 1
2
x3 + 5

2
x2 − 2x + 10

Using Descartes’ Rule of Signs

There is a straightforward way to determine the possible numbers of
positive and negative real zeros for any polynomial function. If the
polynomial is written in descending order, Descartes’ Rule of Signs tells us
of a relationship between the number of sign changes in f(x) and the
number of positive real zeros. For example, the polynomial function below
has one sign change.

This tells us that the function must have 1 positive real zero.



There is a similar relationship between the number of sign changes in
f(−x) and the number of negative real zeros.

In this case, f(−x) has 3 sign changes. This tells us that f(x) could have 3
or 1 negative real zeros.

Note:
Descartes’ Rule of Signs
According to Descartes’ Rule of Signs, if we let 
f(x) = anx

n + an−1x
n−1 + ... + a1x + a0  be a polynomial function

with real coefficients:

The number of positive real zeros is either equal to the number of sign
changes of f(x) or is less than the number of sign changes by an even
integer.
The number of negative real zeros is either equal to the number of
sign changes of f(−x) or is less than the number of sign changes by
an even integer.

Example:
Exercise:

Problem:
Using Descartes’ Rule of Signs

Use Descartes’ Rule of Signs to determine the possible numbers of
positive and negative real zeros for
f(x) = −x4 − 3x3 + 6x2 − 4x − 12.



Solution:

Begin by determining the number of sign changes.

There are two sign changes, so there are either 2 or 0 positive real
roots. Next, we examine f(−x) to determine the number of negative
real roots.

Again, there are two sign changes, so there are either 2 or 0 negative
real roots.

There are four possibilities, as we can see in [link].

Positive Real
Zeros

Negative Real
Zeros

Complex
Zeros

Total
Zeros

2 2 0 4

2 0 2 4

0 2 2 4

0 0 4 4

f(−x) = −(−x)4 − 3(−x)3 + 6(−x)2 − 4(−x) − 12

f(−x) = −x4 + 3x3 + 6x2 + 4x − 12



Analysis

We can confirm the numbers of positive and negative real roots by
examining a graph of the function. See [link]. We can see from the graph
that the function has 0 positive real roots and 2 negative real roots.

Note:
Exercise:

Problem:

Use Descartes’ Rule of Signs to determine the maximum possible
numbers of positive and negative real zeros for
f(x) = 2x4 − 10x3 + 11x2 − 15x + 12.  Use a graph to verify the
numbers of positive and negative real zeros for the function.

Solution:



There must be 4, 2, or 0 positive real roots and 0 negative real roots.
The graph shows that there are 2 positive real zeros and 0 negative
real zeros.

Solving Real-World Applications

We have now introduced a variety of tools for solving polynomial
equations. Let’s use these tools to solve the bakery problem from the
beginning of the section.

Example:
Exercise:

Problem:
Solving Polynomial Equations

A new bakery offers decorated sheet cakes for children’s birthday
parties and other special occasions. The bakery wants the volume of a
small cake to be 351 cubic inches. The cake is in the shape of a
rectangular solid. They want the length of the cake to be four inches
longer than the width of the cake and the height of the cake to be one-
third of the width. What should the dimensions of the cake pan be?

Solution:

Begin by writing an equation for the volume of the cake. The volume
of a rectangular solid is given byV = lwh. We were given that the
length must be four inches longer than the width, so we can express
the length of the cake as l = w + 4. We were given that the height of
the cake is one-third of the width, so we can express the height of the
cake ash = 1

3 w. Let’s write the volume of the cake in terms of width
of the cake.
Equation:



Substitute the given volume into this equation.
Equation:

Descartes' rule of signs tells us there is one positive solution. The
Rational Zero Theorem tells us that the possible rational zeros are 
± 1, ± 3, ± 9, ± 13, ± 27, ± 39, ± 81, ± 117, ± 351,  and
± 1053.  We can use synthetic division to test these possible zeros.

Only positive numbers make sense as dimensions for a cake, so we
need not test any negative values. Let’s begin by testing values that
make the most sense as dimensions for a small sheet cake. Use
synthetic division to checkx = 1.
Equation:

Since 1 is not a solution, we will checkx = 3.

Since 3 is not a solution either, we will testx = 9.

V = (w + 4)(w)( 1
3 w)

V = 1
3
w3 + 4

3
w2

  351 = 1
3 w

3 + 4
3 w

2 Substitute 351 for V .

1053 = w3 + 4w2 Multiply both sides by 3.

      0 = w3 + 4w2 − 1053  Subtract 1053 from both sides.

1 1 4 0 −1053

1 5 5

  1  5 5 −1048



Synthetic division gives a remainder of 0, so 9 is a solution to the
equation. We can use the relationships between the width and the
other dimensions to determine the length and height of the sheet cake
pan.
Equation:

l = w + 4 = 9 + 4 = 13 and h =
1

3
w =

1

3
(9) = 3

The sheet cake pan should have dimensions 13 inches by 9 inches by
3 inches.

Note:
Exercise:

Problem:

A shipping container in the shape of a rectangular solid must have a
volume of 84 cubic meters. The client tells the manufacturer that,
because of the contents, the length of the container must be one meter
longer than the width, and the height must be one meter greater than
twice the width. What should the dimensions of the container be?

Solution:

3 meters by 4 meters by 7 meters

Note:
Access these online resources for additional instruction and practice with
zeros of polynomial functions.



Real Zeros, Factors, and Graphs of Polynomial Functions
Complex Factorization Theorem
Find the Zeros of a Polynomial Function
Find the Zeros of a Polynomial Function 2
Find the Zeros of a Polynomial Function 3

Key Concepts

To find f(k), determine the remainder of the polynomial f(x) when it
is divided byx − k. See [link].
k is a zero of f(x)  if and only if (x − k)  is a factor of f(x).See [link].
Each rational zero of a polynomial function with integer coefficients
will be equal to a factor of the constant term divided by a factor of the
leading coefficient. See [link] and [link].
When the leading coefficient is 1, the possible rational zeros are the
factors of the constant term.
Synthetic division can be used to find the zeros of a polynomial
function. See [link].
According to the Fundamental Theorem, every polynomial function
has at least one complex zero. See [link].
Every polynomial function with degree greater than 0 has at least one
complex zero.
Allowing for multiplicities, a polynomial function will have the same
number of factors as its degree. Each factor will be in the form
(x − c), where c  is a complex number. See [link].
The number of positive real zeros of a polynomial function is either
the number of sign changes of the function or less than the number of
sign changes by an even integer.
The number of negative real zeros of a polynomial function is either
the number of sign changes of f(−x)  or less than the number of sign
changes by an even integer. See [link].
Polynomial equations model many real-world scenarios. Solving the
equations is easiest done by synthetic division. See [link].

http://openstaxcollege.org/l/realzeros
http://openstaxcollege.org/l/factortheorem
http://openstaxcollege.org/l/findthezeros
http://openstaxcollege.org/l/findthezeros2
http://openstaxcollege.org/l/findthezeros3


Section Exercises

Verbal

Exercise:

Problem:Describe a use for the Remainder Theorem.

Solution:

The theorem can be used to evaluate a polynomial.

Exercise:

Problem:

Explain why the Rational Zero Theorem does not guarantee finding
zeros of a polynomial function.

Exercise:

Problem:What is the difference between rational and real zeros?

Solution:

Rational zeros can be expressed as fractions whereas real zeros include
irrational numbers.

Exercise:

Problem:

If Descartes’ Rule of Signs reveals a no change of signs or one sign of
changes, what specific conclusion can be drawn?

Exercise:

Problem:

If synthetic division reveals a zero, why should we try that value again
as a possible solution?



Solution:

Polynomial functions can have repeated zeros, so the fact that number
is a zero doesn’t preclude it being a zero again.

Algebraic

For the following exercises, use the Remainder Theorem to find the
remainder.
Exercise:

Problem:(x4 − 9x2 + 14) ÷ (x − 2)

Exercise:

Problem:(3x3 − 2x2 + x − 4) ÷ (x + 3)

Solution:

−106

Exercise:

Problem:(x4 + 5x3 − 4x − 17) ÷ (x + 1)

Exercise:

Problem:(−3x2 + 6x + 24) ÷ (x − 4)

Solution:

0

Exercise:



Problem:(5x5 − 4x4 + 3x3 − 2x2 + x − 1) ÷ (x + 6)

Exercise:

Problem:(x4 − 1) ÷ (x − 4)

Solution:

255

Exercise:

Problem:(3x3 + 4x2 − 8x + 2) ÷ (x − 3)

Exercise:

Problem:(4x3 + 5x2 − 2x + 7) ÷ (x + 2)

Solution:

−1

For the following exercises, use the Factor Theorem to find all real zeros
for the given polynomial function and one factor.
Exercise:

Problem:f(x) = 2x3 − 9x2 + 13x − 6;  x − 1

Exercise:

Problem:f(x) = 2x3 + x2 − 5x + 2;  x + 2

Solution:

−2,  1,   1
2



Exercise:

Problem:f(x) = 3x3 + x2 − 20x + 12;  x + 3

Exercise:

Problem:f(x) = 2x3 + 3x2 + x + 6; x + 2

Solution:

−2

Exercise:

Problem:f(x) = −5x3 + 16x2 − 9; x − 3

Exercise:

Problem:x3 + 3x2 + 4x + 12; x + 3

Solution:

−3

Exercise:

Problem:4x3 − 7x + 3; x − 1

Exercise:

Problem:2x3 + 5x2 − 12x − 30, 2x + 5

Solution:

− 5
2 ,  √6,   − √6

For the following exercises, use the Rational Zero Theorem to find all real
zeros.



Exercise:

Problem:x3 − 3x2 − 10x + 24 = 0

Exercise:

Problem:2x3 + 7x2 − 10x − 24 = 0

Solution:

2,   − 4,   − 3
2

Exercise:

Problem:x3 + 2x2 − 9x − 18 = 0

Exercise:

Problem:x3 + 5x2 − 16x − 80 = 0

Solution:

4,   − 4,   − 5

Exercise:

Problem:x3 − 3x2 − 25x + 75 = 0

Exercise:

Problem:2x3 − 3x2 − 32x − 15 = 0

Solution:

5,   − 3,   − 1
2

Exercise:



Problem:2x3 + x2 − 7x − 6 = 0

Exercise:

Problem:2x3 − 3x2 − x + 1 = 0

Solution:

1
2 ,   1+√5

2 ,   1−√5
2

Exercise:

Problem:3x3 − x2 − 11x − 6 = 0

Exercise:

Problem:2x3 − 5x2 + 9x − 9 = 0

Solution:

3
2

Exercise:

Problem:2x3 − 3x2 + 4x + 3 = 0

Exercise:

Problem:x4 − 2x3 − 7x2 + 8x + 12 = 0

Solution:

2,  3,   − 1,   − 2

Exercise:

Problem:x4 + 2x3 − 9x2 − 2x + 8 = 0



Exercise:

Problem:4x4 + 4x3 − 25x2 − x + 6 = 0

Solution:

1
2 ,   − 1

2 ,  2,   − 3

Exercise:

Problem:2x4 − 3x3 − 15x2 + 32x − 12 = 0

Exercise:

Problem:x4 + 2x3 − 4x2 − 10x − 5 = 0

Solution:

−1,   − 1,  √5,   − √5

Exercise:

Problem:4x3 − 3x + 1 = 0

Exercise:

Problem:8x4
+ 26x3 + 39x2 + 26x + 6

Solution:

− 3
4 ,   − 1

2

For the following exercises, find all complex solutions (real and non-real).
Exercise:

Problem:x3 + x2 + x + 1 = 0



Exercise:

Problem:x3 − 8x2 + 25x − 26 = 0

Solution:

2,  3 + 2i,  3 − 2i

Exercise:

Problem:x3 + 13x2 + 57x + 85 = 0

Exercise:

Problem:3x3 − 4x2 + 11x + 10 = 0

Solution:

− 2
3 ,  1 + 2i,  1 − 2i

Exercise:

Problem:x4 + 2x3 + 22x2 + 50x − 75 = 0

Exercise:

Problem:2x3 − 3x2 + 32x + 17 = 0

Solution:

− 1
2 ,  1 + 4i,  1 − 4i

Graphical

For the following exercises, use Descartes’ Rule to determine the possible
number of positive and negative solutions. Then graph to confirm which of



those possibilities is the actual combination.
Exercise:

Problem:f(x) = x3 − 1

Exercise:

Problem:f(x) = x4 − x2 − 1

Solution:

1 positive, 1 negative

Exercise:

Problem:f(x) = x3 − 2x2 − 5x + 6

Exercise:

Problem:f(x) = x3 − 2x2 + x − 1

Solution:

3 or 1 positive, 0 negative



Exercise:

Problem:f(x) = x4 + 2x3 − 12x2 + 14x − 5

Exercise:

Problem:f(x) = 2x3 + 37x2 + 200x + 300

Solution:

0 positive, 3 or 1 negative



Exercise:

Problem:f(x) = x3 − 2x2 − 16x + 32

Exercise:

Problem:f(x) = 2x4 − 5x3 − 5x2 + 5x + 3

Solution:

2 or 0 positive, 2 or 0 negative

Exercise:

Problem:f(x) = 2x4 − 5x3 − 14x2 + 20x + 8

Exercise:

Problem:f(x) = 10x4 − 21x2 + 11

Solution:

2 or 0 positive, 2 or 0 negative



Numeric

For the following exercises, list all possible rational zeros for the functions.
Exercise:

Problem:f(x) = x4 + 3x3 − 4x + 4

Exercise:

Problem:f(x) = 2x
3

+ 3x2 − 8x + 5

Solution:

±5,   ± 1,   ± 5
2

Exercise:

Problem:f(x) = 3x
3

+ 5x2 − 5x + 4

Exercise:



Problem:f(x) = 6x4 − 10x2 + 13x + 1

Solution:

±1,   ± 1
2 ,   ± 1

3 ,   ± 1
6

Exercise:

Problem:f(x) = 4x5 − 10x4 + 8x3 + x2 − 8

Technology

For the following exercises, use your calculator to graph the polynomial
function. Based on the graph, find the rational zeros. All real solutions are
rational.
Exercise:

Problem:f(x) = 6x3 − 7x2 + 1

Solution:

1,   1
2 ,   − 1

3

Exercise:

Problem:f(x) = 4x3 − 4x2 − 13x − 5

Exercise:

Problem:f(x) = 8x3 − 6x2 − 23x + 6

Solution:

2,   1
4 ,   − 3

2



Exercise:

Problem:f(x) = 12x4 + 55x3 + 12x2 − 117x + 54

Exercise:

Problem:f(x) = 16x4 − 24x3 + x2 − 15x + 25

Solution:

5
4

Extensions

For the following exercises, construct a polynomial function of least degree
possible using the given information.
Exercise:

Problem:Real roots: –1, 1, 3 and (2, f (2)) = (2, 4)

Exercise:

Problem:

Real roots: –1 (with multiplicity 2 and 1) and (2, f (2)) = (2, 4)

Solution:

f(x) = 4
9
(x3 + x2 − x − 1)

Exercise:

Problem:

Real roots: –2, 1
2  (with multiplicity 2) and (−3, f (−3)) = (−3, 5)

Exercise:



Problem:Real roots: − 1
2  , 0, 1

2  and (−2, f (−2)) = (−2, 6)

Solution:

f(x) = − 1
5 (4x3 − x)

Exercise:

Problem:Real roots: –4, –1, 1, 4 and (−2, f (−2)) = (−2, 10)

Real-World Applications

For the following exercises, find the dimensions of the box described.
Exercise:

Problem:

The length is twice as long as the width. The height is 2 inches greater
than the width. The volume is 192 cubic inches.

Solution:

8 by 4 by 6 inches

Exercise:

Problem:

The length, width, and height are consecutive whole numbers. The
volume is 120 cubic inches.

Exercise:

Problem:

The length is one inch more than the width, which is one inch more
than the height. The volume is 86.625 cubic inches.



Solution:

5.5 by 4.5 by 3.5 inches

Exercise:

Problem:

The length is three times the height and the height is one inch less than
the width. The volume is 108 cubic inches.

Exercise:

Problem:

The length is 3 inches more than the width. The width is 2 inches more
than the height. The volume is 120 cubic inches.

Solution:

8 by 5 by 3 inches

For the following exercises, find the dimensions of the right circular
cylinder described.
Exercise:

Problem:

The radius is 3 inches more than the height. The volume is 16π cubic
meters.

Exercise:

Problem:

The height is one less than one half the radius. The volume is 72π
cubic meters.

Solution:

Radius = 6 meters, Height = 2 meters



Exercise:

Problem:

The radius and height differ by one meter. The radius is larger and the
volume is 48π cubic meters.

Exercise:

Problem:

The radius and height differ by two meters. The height is greater and
the volume is 28.125π  cubic meters.

Solution:

Radius = 2.5 meters, Height = 4.5 meters

Exercise:

Problem:

80. The radius is 1
3 meter greater than the height. The volume is 98

9 π

cubic meters.

Glossary

Descartes’ Rule of Signs
a rule that determines the maximum possible numbers of positive and
negative real zeros based on the number of sign changes of f(x) and
f(−x)

Factor Theorem
k is a zero of polynomial function f(x) if and only if (x − k)  is a
factor of f(x)

Fundamental Theorem of Algebra
a polynomial function with degree greater than 0 has at least one
complex zero



Linear Factorization Theorem
allowing for multiplicities, a polynomial function will have the same
number of factors as its degree, and each factor will be in the form 
(x − c),  where c is a complex number

Rational Zero Theorem
the possible rational zeros of a polynomial function have the form p

q

where p is a factor of the constant term and q is a factor of the leading
coefficient.

Remainder Theorem
if a polynomial f(x) is divided byx − k, then the remainder is equal
to the value f(k)



Rational Functions
In this section, you will:

Use arrow notation.
Solve applied problems involving rational functions.
Find the domains of rational functions.
Identify vertical asymptotes.
Identify horizontal asymptotes.
Graph rational functions.

Suppose we know that the cost of making a product is dependent on the
number of items,x, produced. This is given by the equation
C(x) = 15,000x − 0.1x2 + 1000. If we want to know the average cost for
producingx items, we would divide the cost function by the number of
items,x.

The average cost function, which yields the average cost per item forx
items produced, is
Equation:

f(x) =
15,000x − 0.1x2 + 1000

x

Many other application problems require finding an average value in a
similar way, giving us variables in the denominator. Written without a
variable in the denominator, this function will contain a negative integer
power.

In the last few sections, we have worked with polynomial functions, which
are functions with non-negative integers for exponents. In this section, we
explore rational functions, which have variables in the denominator.

Using Arrow Notation

We have seen the graphs of the basic reciprocal function and the squared
reciprocal function from our study of toolkit functions. Examine these
graphs, as shown in [link], and notice some of their features.



Several things are apparent if we examine the graph of f(x) = 1
x

.

1. On the left branch of the graph, the curve approaches the x-axis
(y = 0) as x →– ∞.

2. As the graph approachesx = 0 from the left, the curve drops, but as
we approach zero from the right, the curve rises.

3. Finally, on the right branch of the graph, the curves approaches the x-
axis (y = 0) as x → ∞.

To summarize, we use arrow notation to show thatx or f(x) is
approaching a particular value. See [link].

Symbol Meaning



Arrow Notation

Symbol Meaning

x → a− x approaches a from the left (x < a but close to a)

x → a+ x approaches a from the right (x > a but close to a
)

x → ∞ x approaches infinity (x increases without bound)

x → −∞
x approaches negative infinity (x decreases without
bound)

f(x) → ∞
the output approaches infinity (the output increases
without bound)

f(x) → −∞
the output approaches negative infinity (the output
decreases without bound)

f(x) → a the output approaches a

Local Behavior of f(x) = 1
x

Let’s begin by looking at the reciprocal function, f(x) = 1
x

. We cannot
divide by zero, which means the function is undefined atx = 0; so zero is
not in the domain. As the input values approach zero from the left side
(becoming very small, negative values), the function values decrease
without bound (in other words, they approach negative infinity). We can see
this behavior in [link].



x –0.1 –0.01 –0.001 –0.0001

f(x) = 1
x –10 –100 –1000 –10,000

We write in arrow notation
Equation:

as x → 0−, f(x) → −∞

As the input values approach zero from the right side (becoming very small,
positive values), the function values increase without bound (approaching
infinity). We can see this behavior in [link].

x 0.1 0.01 0.001 0.0001

f(x) = 1
x 10 100 1000 10,000

We write in arrow notation
Equation:

As x → 0+,  f(x) → ∞.

See [link].



This behavior creates a vertical asymptote, which is a vertical line that the
graph approaches but never crosses. In this case, the graph is approaching
the vertical linex = 0 as the input becomes close to zero. See [link].



Note:
Vertical Asymptote
A vertical asymptote of a graph is a vertical linex = awhere the graph
tends toward positive or negative infinity as the inputs approach a. We
write
Equation:

As x → a, f(x) → ∞,  or as x → a, f(x) → −∞.

End Behavior of f(x) = 1
x

As the values ofx approach infinity, the function values approach 0. As the
values ofx approach negative infinity, the function values approach 0. See
[link]. Symbolically, using arrow notation

As x → ∞, f(x) → 0, and as x → −∞, f(x) → 0.



Based on this overall behavior and the graph, we can see that the function
approaches 0 but never actually reaches 0; it seems to level off as the inputs
become large. This behavior creates a horizontal asymptote, a horizontal
line that the graph approaches as the input increases or decreases without
bound. In this case, the graph is approaching the horizontal line y = 0. See
[link].



Note:
Horizontal Asymptote
A horizontal asymptote of a graph is a horizontal line y = bwhere the
graph approaches the line as the inputs increase or decrease without bound.
We write
Equation:

As x → ∞ or x → −∞,  f(x) → b.

Example:
Exercise:

Problem:
Using Arrow Notation



Use arrow notation to describe the end behavior and local behavior of
the function graphed in [link].

Solution:

Notice that the graph is showing a vertical asymptote atx = 2, which
tells us that the function is undefined atx = 2.
Equation:

As x → 2−, f(x) → −∞,  and as x → 2+,  f(x) → ∞.

And as the inputs decrease without bound, the graph appears to be
leveling off at output values of 4, indicating a horizontal asymptote at
y = 4. As the inputs increase without bound, the graph levels off at 4.
Equation:



As x → ∞,  f(x) → 4 and as x → −∞,  f(x) → 4.

Note:
Exercise:

Problem:

Use arrow notation to describe the end behavior and local behavior
for the reciprocal squared function.

Solution:

End behavior: asx → ±∞,  f(x) → 0; Local behavior: as
x → 0,  f(x) → ∞ (there are no x- or y-intercepts)

Example:
Exercise:

Problem:
Using Transformations to Graph a Rational Function

Sketch a graph of the reciprocal function shifted two units to the left
and up three units. Identify the horizontal and vertical asymptotes of
the graph, if any.

Solution:

Shifting the graph left 2 and up 3 would result in the function
Equation:

f(x) =
1

x + 2
+ 3



or equivalently, by giving the terms a common denominator,
Equation:

f(x) =
3x + 7

x + 2

The graph of the shifted function is displayed in [link].

Notice that this function is undefined atx = −2, and the graph also is
showing a vertical asymptote atx = −2.
Equation:

As x → −2−,  f(x) → −∞, and as x → −2+,  f(x) → ∞.

As the inputs increase and decrease without bound, the graph appears
to be leveling off at output values of 3, indicating a horizontal
asymptote at y = 3.
Equation:

As x → ±∞,  f(x) → 3.



Analysis

Notice that horizontal and vertical asymptotes are shifted left 2 and up 3
along with the function.

Note:
Exercise:

Problem:

Sketch the graph, and find the horizontal and vertical asymptotes of
the reciprocal squared function that has been shifted right 3 units and
down 4 units.

Solution:

The function and the asymptotes are shifted 3 units right and 4 units
down. Asx → 3, f(x) → ∞, and asx → ±∞, f(x) → −4.



The function is f(x) = 1

(x−3)2 − 4.

Solving Applied Problems Involving Rational Functions

In [link], we shifted a toolkit function in a way that resulted in the function
f(x) = 3x+7

x+2
. This is an example of a rational function. A rational

function is a function that can be written as the quotient of two polynomial
functions. Many real-world problems require us to find the ratio of two
polynomial functions. Problems involving rates and concentrations often
involve rational functions.

Note:
Rational Function
A rational function is a function that can be written as the quotient of two
polynomial functionsP(x) and Q(x).
Equation:

f(x) =
P(x)

Q(x)
=

apx
p + ap−1x

p−1 + ... + a1x + a0

bqxq + bq−1xq−1 + ... + b1x + b0
,Q(x) ≠ 0

Example:
Exercise:

Problem:
Solving an Applied Problem Involving a Rational Function



A large mixing tank currently contains 100 gallons of water into
which 5 pounds of sugar have been mixed. A tap will open pouring 10
gallons per minute of water into the tank at the same time sugar is
poured into the tank at a rate of 1 pound per minute. Find the
concentration (pounds per gallon) of sugar in the tank after 12
minutes. Is that a greater concentration than at the beginning?

Solution:

Let t be the number of minutes since the tap opened. Since the water
increases at 10 gallons per minute, and the sugar increases at 1 pound
per minute, these are constant rates of change. This tells us the
amount of water in the tank is changing linearly, as is the amount of
sugar in the tank. We can write an equation independently for each:
Equation:

The concentration,C, will be the ratio of pounds of sugar to gallons
of water
Equation:

C(t) =
5 + t

100 + 10t

The concentration after 12 minutes is given by evaluatingC (t) at
t =  12.
Equation:

water: W(t) = 100 + 10t in gallons

sugar: S(t) = 5 + 1t in pounds

C(12) = 5+12
100+10(12)

          = 17
220



This means the concentration is 17 pounds of sugar to 220 gallons of
water.

At the beginning, the concentration is
Equation:

Since 17
220

≈ 0.08 > 1
20

= 0.05, the concentration is greater after 12
minutes than at the beginning.

Analysis

To find the horizontal asymptote, divide the leading coefficient in the
numerator by the leading coefficient in the denominator:
Equation:

1

10
= 0.1

Notice the horizontal asymptote is y =  0.1. This means the concentration,
C, the ratio of pounds of sugar to gallons of water, will approach 0.1 in
the long term.

Note:
Exercise:

Problem:

There are 1,200 freshmen and 1,500 sophomores at a prep rally at
noon. After 12 p.m., 20 freshmen arrive at the rally every five minutes
while 15 sophomores leave the rally. Find the ratio of freshmen to
sophomores at 1 p.m.

C(0) = 5+0
100+10(0)

        = 1
20



Solution:

12
11

Finding the Domains of Rational Functions

A vertical asymptote represents a value at which a rational function is
undefined, so that value is not in the domain of the function. A reciprocal
function cannot have values in its domain that cause the denominator to
equal zero. In general, to find the domain of a rational function, we need to
determine which inputs would cause division by zero.

Note:
Domain of a Rational Function
The domain of a rational function includes all real numbers except those
that cause the denominator to equal zero.

Note:
Given a rational function, find the domain.

1. Set the denominator equal to zero.
2. Solve to find the x-values that cause the denominator to equal zero.
3. The domain is all real numbers except those found in Step 2.

Example:
Exercise:

Problem:
Finding the Domain of a Rational Function



Find the domain of f(x) = x+3
x2−9

.

Solution:

Begin by setting the denominator equal to zero and solving.
Equation:

The denominator is equal to zero whenx = ±3. The domain of the
function is all real numbers exceptx = ±3.

Analysis

A graph of this function, as shown in [link], confirms that the function is
not defined whenx = ±3.

      x2 = 9

        x = ±3

x2 − 9 = 0



There is a vertical asymptote atx = 3 and a hole in the graph atx = −3.
We will discuss these types of holes in greater detail later in this section.

Note:
Exercise:

Problem:Find the domain of f(x) = 4x
5(x−1)(x−5)

.

Solution:

The domain is all real numbers exceptx = 1 andx = 5.

Identifying Vertical Asymptotes of Rational Functions

By looking at the graph of a rational function, we can investigate its local
behavior and easily see whether there are asymptotes. We may even be able
to approximate their location. Even without the graph, however, we can still
determine whether a given rational function has any asymptotes, and
calculate their location.

Vertical Asymptotes

The vertical asymptotes of a rational function may be found by examining
the factors of the denominator that are not common to the factors in the
numerator. Vertical asymptotes occur at the zeros of such factors.

Note:
Given a rational function, identify any vertical asymptotes of its graph.



1. Factor the numerator and denominator.
2. Note any restrictions in the domain of the function.
3. Reduce the expression by canceling common factors in the numerator

and the denominator.
4. Note any values that cause the denominator to be zero in this

simplified version. These are where the vertical asymptotes occur.
5. Note any restrictions in the domain where asymptotes do not occur.

These are removable discontinuities.

Example:
Exercise:

Problem:
Identifying Vertical Asymptotes

Find the vertical asymptotes of the graph of k(x) = 5+2x2

2−x−x2 .

Solution:

First, factor the numerator and denominator.
Equation:

To find the vertical asymptotes, we determine where this function will
be undefined by setting the denominator equal to zero:
Equation:

k(x) = 5+2x2

2−x−x2

        = 5+2x2

(2+x)(1−x)

(2 + x)(1 − x) = 0

                    x = −2, 1



Neitherx =– 2 norx = 1 are zeros of the numerator, so the two
values indicate two vertical asymptotes. The graph in [link] confirms
the location of the two vertical asymptotes.

Removable Discontinuities

Occasionally, a graph will contain a hole: a single point where the graph is
not defined, indicated by an open circle. We call such a hole a removable
discontinuity.

For example, the function f(x) = x2−1
x2−2x−3

may be re-written by factoring
the numerator and the denominator.



Equation:

f(x) =
(x + 1) (x − 1)

(x + 1) (x − 3)

Notice thatx + 1 is a common factor to the numerator and the denominator.
The zero of this factor,x = −1, is the location of the removable
discontinuity. Notice also thatx– 3 is not a factor in both the numerator and
denominator. The zero of this factor,x = 3, is the vertical asymptote. See
[link].

Note:
Removable Discontinuities of Rational Functions
A removable discontinuity occurs in the graph of a rational function at
x = a if a is a zero for a factor in the denominator that is common with a
factor in the numerator. We factor the numerator and denominator and
check for common factors. If we find any, we set the common factor equal



to 0 and solve. This is the location of the removable discontinuity. This is
true if the multiplicity of this factor is greater than or equal to that in the
denominator. If the multiplicity of this factor is greater in the denominator,
then there is still an asymptote at that value.

Example:
Exercise:

Problem:
Identifying Vertical Asymptotes and Removable Discontinuities
for a Graph

Find the vertical asymptotes and removable discontinuities of the
graph of k(x) = x−2

x2−4
.

Solution:

Factor the numerator and the denominator.
Equation:

k(x) =
x − 2

(x − 2)(x + 2)

Notice that there is a common factor in the numerator and the
denominator,x– 2. The zero for this factor isx = 2. This is the
location of the removable discontinuity.

Notice that there is a factor in the denominator that is not in the
numerator,x + 2. The zero for this factor isx = −2. The vertical
asymptote isx = −2. See [link].



The graph of this function will have the vertical asymptote at
x = −2, but atx = 2 the graph will have a hole.

Note:
Exercise:

Problem: 

Find the vertical asymptotes and removable discontinuities of the
graph of f(x) = x2−25

x3−6x2+5x
.

Solution:

Removable discontinuity atx = 5. Vertical asymptotes:
x = 0,  x = 1.



Identifying Horizontal Asymptotes of Rational Functions

While vertical asymptotes describe the behavior of a graph as the output
gets very large or very small, horizontal asymptotes help describe the
behavior of a graph as the input gets very large or very small. Recall that a
polynomial’s end behavior will mirror that of the leading term. Likewise, a
rational function’s end behavior will mirror that of the ratio of the leading
terms of the numerator and denominator functions.

There are three distinct outcomes when checking for horizontal asymptotes:

Case 1: If the degree of the denominator > degree of the numerator, there is
a horizontal asymptote at y = 0.
Equation:

Example: f(x) =
4x + 2

x2 + 4x − 5

In this case, the end behavior is f(x) ≈ 4x
x2 = 4

x
. This tells us that, as the

inputs increase or decrease without bound, this function will behave
similarly to the function g(x) = 4

x
, and the outputs will approach zero,

resulting in a horizontal asymptote at y = 0. See [link]. Note that this graph
crosses the horizontal asymptote.

Horizontal Asymptote y = 0 when



Case 2: If the degree of the denominator < degree of the numerator by one,
we get a slant asymptote.
Equation:

Example: f(x) =
3x2 − 2x + 1

x − 1

In this case, the end behavior is f(x) ≈ 3x2

x
= 3x. This tells us that as the

inputs increase or decrease without bound, this function will behave
similarly to the function g(x) = 3x. As the inputs grow large, the outputs
will grow and not level off, so this graph has no horizontal asymptote.
However, the graph of g(x) = 3x looks like a diagonal line, and since f will
behave similarly to g, it will approach a line close to y = 3x. This line is a
slant asymptote.

To find the equation of the slant asymptote, divide 3x2−2x+1
x−1

. The quotient
is 3x + 1, and the remainder is 2. The slant asymptote is the graph of the
line g(x) = 3x + 1. See [link].

f(x) =
p(x)

q(x)
, q(x) ≠ 0 where degree of p < degree of q.



Case 3: If the degree of the denominator = degree of the numerator, there is
a horizontal asymptote at y = an

bn
, where an and bn are the leading

coefficients of p (x) and q (x) for f(x) =
p(x)

q(x)
, q(x) ≠ 0.

Equation:

Example: f(x) =
3x2 + 2

x2 + 4x − 5

Slant Asymptote when f(x) =
p(x)

q(x)
, q(x) ≠ 0 where

degree of p > degree of q by 1.



In this case, the end behavior is f(x) ≈ 3x2

x2 = 3. This tells us that as the
inputs grow large, this function will behave like the function g(x) = 3,
which is a horizontal line. Asx → ±∞, f(x) → 3, resulting in a
horizontal asymptote at y = 3. See [link]. Note that this graph crosses the
horizontal asymptote.

Notice that, while the graph of a rational function will never cross a vertical
asymptote, the graph may or may not cross a horizontal or slant asymptote.
Also, although the graph of a rational function may have many vertical
asymptotes, the graph will have at most one horizontal (or slant) asymptote.

It should be noted that, if the degree of the numerator is larger than the
degree of the denominator by more than one, the end behavior of the graph
will mimic the behavior of the reduced end behavior fraction. For instance,
if we had the function

Horizontal Asymptote when
f(x) =

p(x)

q(x)
, q(x) ≠ 0 where degree of p = degree of q.



Equation:

f(x) =
3x5 − x2

x + 3

with end behavior
Equation:

f(x) ≈
3x5

x
= 3x4,

the end behavior of the graph would look similar to that of an even
polynomial with a positive leading coefficient.
Equation:

x → ±∞,  f(x) → ∞

Note:
Horizontal Asymptotes of Rational Functions
The horizontal asymptote of a rational function can be determined by
looking at the degrees of the numerator and denominator.

Degree of numerator is less than degree of denominator: horizontal
asymptote at y = 0.
Degree of numerator is greater than degree of denominator by one: no
horizontal asymptote; slant asymptote.
Degree of numerator is equal to degree of denominator: horizontal
asymptote at ratio of leading coefficients.

Example:
Exercise:



Problem:
Identifying Horizontal and Slant Asymptotes

For the functions below, identify the horizontal or slant asymptote.

a. g(x) = 6x3−10x
2x3+5x2

b. h(x) = x2−4x+1
x+2

c. k(x) = x2+4x
x3−8

Solution:

For these solutions, we will use f(x) =
p(x)

q(x)
,  q(x) ≠ 0.

a. g(x) = 6x3−10x
2x3+5x2 : The degree of p = degree of q = 3, so we

can find the horizontal asymptote by taking the ratio of the
leading terms. There is a horizontal asymptote at y = 6

2
or

y = 3.

b. h(x) = x2−4x+1
x+2 : The degree of p = 2 and degree of q = 1.

Since p > q by 1, there is a slant asymptote found at x2−4x+1
x+2 .

Equation:

The quotient isx– 6 and the remainder is 13. There is a slant
asymptote at y = x– 6.

c. k(x) = x2+4x
x3−8

: The degree of p = 2  < degree of q = 3, so
there is a horizontal asymptote y = 0.

−2 1 −4 1

−2 12

   1 −6 13



Example:
Exercise:

Problem:
Identifying Horizontal Asymptotes

In the sugar concentration problem earlier, we created the equation
C(t) = 5+t

100+10t .

Find the horizontal asymptote and interpret it in context of the
problem.

Solution:

Both the numerator and denominator are linear (degree 1). Because
the degrees are equal, there will be a horizontal asymptote at the ratio
of the leading coefficients. In the numerator, the leading term is t,
with coefficient 1. In the denominator, the leading term is 10t, with
coefficient 10. The horizontal asymptote will be at the ratio of these
values:
Equation:

t → ∞,  C(t) →
1

10

This function will have a horizontal asymptote at y = 1
10 .

This tells us that as the values of t increase, the values ofC will
approach 1

10 . In context, this means that, as more time goes by, the
concentration of sugar in the tank will approach one-tenth of a pound
of sugar per gallon of water or 1

10 pounds per gallon.

Example:
Exercise:



Problem:
Identifying Horizontal and Vertical Asymptotes

Find the horizontal and vertical asymptotes of the function
Equation:

f(x) =
(x − 2)(x + 3)

(x − 1)(x + 2)(x − 5)

Solution:

First, note that this function has no common factors, so there are no
potential removable discontinuities.

The function will have vertical asymptotes when the denominator is
zero, causing the function to be undefined. The denominator will be
zero atx = 1, – 2, and 5, indicating vertical asymptotes at these
values.

The numerator has degree 2, while the denominator has degree 3.
Since the degree of the denominator is greater than the degree of the
numerator, the denominator will grow faster than the numerator,
causing the outputs to tend towards zero as the inputs get large, and so
asx → ±∞,  f(x) → 0. This function will have a horizontal
asymptote at y = 0. See [link].



Note:
Exercise:

Problem: Find the vertical and horizontal asymptotes of the function:

f(x) =
(2x−1)(2x+1)

(x−2)(x+3)

Solution:

Vertical asymptotes atx = 2 andx =– 3; horizontal asymptote at
y = 4.

Note:



Intercepts of Rational Functions
A rational function will have a y-intercept when the input is zero, if the
function is defined at zero. A rational function will not have a y-intercept if
the function is not defined at zero.
Likewise, a rational function will have x-intercepts at the inputs that cause
the output to be zero. Since a fraction is only equal to zero when the
numerator is zero, x-intercepts can only occur when the numerator of the
rational function is equal to zero.

Example:
Exercise:

Problem:
Finding the Intercepts of a Rational Function

Find the intercepts of f(x) =
(x−2)(x+3)

(x−1)(x+2)(x−5)
.

Solution:

We can find the y-intercept by evaluating the function at zero
Equation:

The x-intercepts will occur when the function is equal to zero:
Equation:

f(0) =
(0−2)(0+3)

(0−1)(0+2)(0−5)

         = −6
10

         = − 3
5

        = −0.6



The y-intercept is (0, –0.6), the x-intercepts are (2, 0) and (–3, 0). See
[link].

Note:
Exercise:

Problem:

Given the reciprocal squared function that is shifted right 3 units and
down 4 units, write this as a rational function. Then, find the x- and y-
intercepts and the horizontal and vertical asymptotes.

0 =
(x−2)(x+3)

(x−1)(x+2)(x−5)
This is zero when the numerator is zero.

0 = (x − 2)(x + 3)

x = 2,   − 3



Solution:

For the transformed reciprocal squared function, we find the rational
form.
f(x) = 1

(x−3)2 − 4 =
1−4(x−3)2

(x−3)2 =
1−4(x2−6x+9)

(x−3)(x−3) = −4x2+24x−35
x2−6x+9

Because the numerator is the same degree as the denominator we
know that asx → ±∞,  f(x) → −4;  so y =– 4 is the horizontal
asymptote. Next, we set the denominator equal to zero, and find that
the vertical asymptote isx = 3, because asx → 3, f(x) → ∞. We
then set the numerator equal to 0 and find the x-intercepts are at
(2.5, 0) and (3.5, 0). Finally, we evaluate the function at 0 and find
the y-intercept to be at (0, −35

9 ).

Graphing Rational Functions

In [link], we see that the numerator of a rational function reveals the x-
intercepts of the graph, whereas the denominator reveals the vertical
asymptotes of the graph. As with polynomials, factors of the numerator may
have integer powers greater than one. Fortunately, the effect on the shape of
the graph at those intercepts is the same as we saw with polynomials.

The vertical asymptotes associated with the factors of the denominator will
mirror one of the two toolkit reciprocal functions. When the degree of the
factor in the denominator is odd, the distinguishing characteristic is that on
one side of the vertical asymptote the graph heads towards positive infinity,
and on the other side the graph heads towards negative infinity. See [link].



When the degree of the factor in the denominator is even, the distinguishing
characteristic is that the graph either heads toward positive infinity on both
sides of the vertical asymptote or heads toward negative infinity on both
sides. See [link].



For example, the graph of f(x) =
(x+1)2(x−3)

(x+3)2(x−2)
is shown in [link].



At the x-interceptx = −1 corresponding to the (x + 1)2 factor of the
numerator, the graph bounces, consistent with the quadratic nature of
the factor.
At the x-interceptx = 3 corresponding to the (x − 3) factor of the
numerator, the graph passes through the axis as we would expect from
a linear factor.
At the vertical asymptotex = −3 corresponding to the (x + 3)2 factor
of the denominator, the graph heads towards positive infinity on both
sides of the asymptote, consistent with the behavior of the function
f(x) = 1

x2 .

At the vertical asymptotex = 2, corresponding to the (x − 2) factor
of the denominator, the graph heads towards positive infinity on the



left side of the asymptote and towards negative infinity on the right
side, consistent with the behavior of the function f(x) = 1

x
.

Note:
Given a rational function, sketch a graph.

1. Evaluate the function at 0 to find the y-intercept.
2. Factor the numerator and denominator.
3. For factors in the numerator not common to the denominator,

determine where each factor of the numerator is zero to find the x-
intercepts.

4. Find the multiplicities of the x-intercepts to determine the behavior of
the graph at those points.

5. For factors in the denominator, note the multiplicities of the zeros to
determine the local behavior. For those factors not common to the
numerator, find the vertical asymptotes by setting those factors equal
to zero and then solve.

6. For factors in the denominator common to factors in the numerator,
find the removable discontinuities by setting those factors equal to 0
and then solve.

7. Compare the degrees of the numerator and the denominator to
determine the horizontal or slant asymptotes.

8. Sketch the graph.

Example:
Exercise:

Problem:
Graphing a Rational Function

Sketch a graph of f(x) =
(x+2)(x−3)

(x+1)2(x−2)
.

Solution:



We can start by noting that the function is already factored, saving us
a step.

Next, we will find the intercepts. Evaluating the function at zero gives
the y-intercept:
Equation:

To find the x-intercepts, we determine when the numerator of the
function is zero. Setting each factor equal to zero, we find x-intercepts
atx = –2 andx = 3. At each, the behavior will be linear (multiplicity
1), with the graph passing through the intercept.

We have a y-intercept at (0, 3) and x-intercepts at (–2, 0) and (3, 0).

To find the vertical asymptotes, we determine when the denominator
is equal to zero. This occurs whenx + 1 = 0 and whenx– 2 = 0,
giving us vertical asymptotes atx = –1 andx = 2.

There are no common factors in the numerator and denominator. This
means there are no removable discontinuities.

Finally, the degree of denominator is larger than the degree of the
numerator, telling us this graph has a horizontal asymptote at y = 0.

To sketch the graph, we might start by plotting the three intercepts.
Since the graph has no x-intercepts between the vertical asymptotes,
and the y-intercept is positive, we know the function must remain
positive between the asymptotes, letting us fill in the middle portion
of the graph as shown in [link].

f(0) =
(0+2)(0−3)

(0+1)2(0−2)

        = 3



The factor associated with the vertical asymptote atx = −1 was
squared, so we know the behavior will be the same on both sides of
the asymptote. The graph heads toward positive infinity as the inputs
approach the asymptote on the right, so the graph will head toward
positive infinity on the left as well.

For the vertical asymptote atx = 2, the factor was not squared, so the
graph will have opposite behavior on either side of the asymptote. See
[link]. After passing through the x-intercepts, the graph will then level
off toward an output of zero, as indicated by the horizontal asymptote.



Note:
Exercise:

Problem:

Given the function f(x) =
(x+2)2(x−2)

2(x−1)2(x−3)
, use the characteristics of

polynomials and rational functions to describe its behavior and sketch
the function.

Solution:

Horizontal asymptote at y = 1
2 . Vertical asymptotes at

x = 1 and x = 3. y-intercept at (0, 4
3

. )



x-intercepts at (2, 0)  and (– 2, 0). (– 2, 0) is a zero with multiplicity
2, and the graph bounces off the x-axis at this point. (2, 0) is a single
zero and the graph crosses the axis at this point.

Writing Rational Functions

Now that we have analyzed the equations for rational functions and how
they relate to a graph of the function, we can use information given by a
graph to write the function. A rational function written in factored form will
have an x-intercept where each factor of the numerator is equal to zero. (An
exception occurs in the case of a removable discontinuity.) As a result, we
can form a numerator of a function whose graph will pass through a set of
x-intercepts by introducing a corresponding set of factors. Likewise,
because the function will have a vertical asymptote where each factor of the
denominator is equal to zero, we can form a denominator that will produce
the vertical asymptotes by introducing a corresponding set of factors.



Note:
Writing Rational Functions from Intercepts and Asymptotes
If a rational function has x-intercepts atx = x1,  x2,  ...,  xn, vertical
asymptotes atx = v1, v2, … , vm, and noxi = any vj, then the function
can be written in the form:
Equation:

f(x) = a
(x − x1)

p1(x − x2)
p2 ⋯ (x − xn)pn

(x − v1)
q1(x − v2)

q2 ⋯ (x − vm)qn

where the powers pi or qi on each factor can be determined by the behavior
of the graph at the corresponding intercept or asymptote, and the stretch
factor a can be determined given a value of the function other than the x-
intercept or by the horizontal asymptote if it is nonzero.

Note:
Given a graph of a rational function, write the function.

1. Determine the factors of the numerator. Examine the behavior of the
graph at the x-intercepts to determine the zeroes and their
multiplicities. (This is easy to do when finding the “simplest” function
with small multiplicities—such as 1 or 3—but may be difficult for
larger multiplicities—such as 5 or 7, for example.)

2. Determine the factors of the denominator. Examine the behavior on
both sides of each vertical asymptote to determine the factors and
their powers.

3. Use any clear point on the graph to find the stretch factor.

Example:
Exercise:

Problem:
Writing a Rational Function from Intercepts and Asymptotes



Write an equation for the rational function shown in [link].

Solution:

The graph appears to have x-intercepts atx =– 2 andx = 3. At both,
the graph passes through the intercept, suggesting linear factors. The
graph has two vertical asymptotes. The one atx =– 1 seems to exhibit
the basic behavior similar to 1

x
, with the graph heading toward

positive infinity on one side and heading toward negative infinity on
the other. The asymptote atx = 2 is exhibiting a behavior similar to

1
x2 , with the graph heading toward negative infinity on both sides of

the asymptote. See [link].



We can use this information to write a function of the form
Equation:

f(x) = a
(x + 2)(x − 3)

(x + 1)(x − 2)2
.

To find the stretch factor, we can use another clear point on the graph,
such as the y-intercept (0, –2).
Equation:

This gives us a final function of f(x) =
4(x+2)(x−3)

3(x+1)(x−2)2 .

−2 = a
(0+2)(0−3)

(0+1)(0−2)2

−2 = a −6
4

   a = −8
−6 = 4

3



Note:
Access these online resources for additional instruction and practice with
rational functions.

Graphing Rational Functions
Find the Equation of a Rational Function
Determining Vertical and Horizontal Asymptotes
Find the Intercepts, Asymptotes, and Hole of a Rational Function

Key Equations

Rational
Function f(x) =

P(x)
Q(x) =

apx
p+ap−1x

p−1+...+a1x+a0

bqx
q+bq−1x

q−1+...+b1x+b0
,  Q(x) ≠ 0

Key Concepts

We can use arrow notation to describe local behavior and end behavior
of the toolkit functions f(x) = 1

x
and f(x) = 1

x2 . See [link].
A function that levels off at a horizontal value has a horizontal
asymptote. A function can have more than one vertical asymptote. See
[link].
Application problems involving rates and concentrations often involve
rational functions. See [link].
The domain of a rational function includes all real numbers except
those that cause the denominator to equal zero. See [link].
The vertical asymptotes of a rational function will occur where the
denominator of the function is equal to zero and the numerator is not
zero. See [link].

http://openstaxcollege.org/l/graphrational
http://openstaxcollege.org/l/equatrational
http://openstaxcollege.org/l/asymptote
http://openstaxcollege.org/l/interasymptote


A removable discontinuity might occur in the graph of a rational
function if an input causes both numerator and denominator to be zero.
See [link].
A rational function’s end behavior will mirror that of the ratio of the
leading terms of the numerator and denominator functions. See [link],
[link], [link], and [link].
Graph rational functions by finding the intercepts, behavior at the
intercepts and asymptotes, and end behavior. See [link].
If a rational function has x-intercepts atx = x1,x2, … ,xn, vertical
asymptotes atx = v1, v2, … , vm, and noxi = any vj, then the
function can be written in the form
Equation:

See [link].

Section Exercises

Verbal

Exercise:

Problem:

What is the fundamental difference in the algebraic representation of a
polynomial function and a rational function?

Solution:

The rational function will be represented by a quotient of polynomial
functions.

Exercise:

f(x) = a
(x−x1)

p1(x−x2)
p2⋯(x−xn)pn

(x−v1)
q1(x−v2)

q2⋯(x−vm)qn



Problem: 

What is the fundamental difference in the graphs of polynomial
functions and rational functions?

Exercise:

Problem:

If the graph of a rational function has a removable discontinuity, what
must be true of the functional rule?

Solution:

The numerator and denominator must have a common factor.

Exercise:

Problem:

Can a graph of a rational function have no vertical asymptote? If so,
how?

Exercise:

Problem:

Can a graph of a rational function have no x-intercepts? If so, how?

Solution:

Yes. The numerator of the formula of the functions would have only
complex roots and/or factors common to both the numerator and
denominator.

Algebraic

For the following exercises, find the domain of the rational functions.
Exercise:



Problem:f(x) = x−1
x+2

Exercise:

Problem:f(x) = x+1
x2−1

Solution:

All reals x ≠– 1,  1

Exercise:

Problem:f(x) = x2+4
x2−2x−8

Exercise:

Problem:f(x) = x2+4x−3
x4−5x2+4

Solution:

All reals x ≠– 1,  – 2,  1,  2

For the following exercises, find the domain, vertical asymptotes, and
horizontal asymptotes of the functions.
Exercise:

Problem:f(x) = 4
x−1

Exercise:

Problem:f (x) = 2
5x+2

Solution:

V.A. atx =– 2
5 ; H.A. at y = 0; Domain is all realsx ≠– 2

5



Exercise:

Problem:f(x) = x
x2−9

Exercise:

Problem:f(x) = x
x2+5x−36

Solution:

V.A. atx = 4,  – 9; H.A. at y = 0; Domain is all realsx ≠ 4,  – 9

Exercise:

Problem:f (x) = 3+x

x3−27

Exercise:

Problem:f(x) = 3x−4
x3−16x

Solution:

V.A. atx = 0,  4,   − 4; H.A. at y = 0;Domain is all reals
x ≠ 0, 4,  – 4

Exercise:

Problem:f(x) = x2−1
x3+9x2+14x

Exercise:

Problem:f(x) = x+5
x2−25

Solution:

V.A. atx = −5; H.A. at y = 0; Domain is all realsx ≠ 5, −5



Exercise:

Problem:f(x) = x−4
x−6

Exercise:

Problem:f (x) = 4−2x
3x−1

Solution:

V.A. atx = 1
3

; H.A. at y = − 2
3

; Domain is all realsx ≠ 1
3

.

For the following exercises, find the x- and y-intercepts for the functions.
Exercise:

Problem: f(x) = x+5
x2+4

Exercise:

Problem:f(x) = x
x2−x

Solution:

none

Exercise:

Problem:f(x) = x2+8x+7
x2+11x+30

Exercise:

Problem:f(x) = x2+x+6
x2−10x+24

Solution:



x-intercepts none, y-intercept  (0, 1
4 )

Exercise:

Problem:f(x) = 94−2x2

3x2−12

For the following exercises, describe the local and end behavior of the
functions.
Exercise:

Problem:f (x) = x
2x+1

Solution:

Local behavior:x → − 1
2

+
, f(x) → −∞,x → − 1

2

−
, f(x) → ∞

End behavior:x → ±∞, f(x) → 1
2

Exercise:

Problem:f (x) = 2x
x−6

Exercise:

Problem:f (x) = −2x
x−6

Solution:

Local behavior:x → 6+, f(x) → −∞,x → 6−, f(x) → ∞, End
behavior:x → ±∞, f(x) → −2

Exercise:

Problem:f (x) = x2−4x+3
x2−4x−5

Exercise:



Problem:f (x) = 2x2−32
6x2+13x−5

Solution:

Local behavior:x → − 1
3

+
, f(x) → ∞,x → − 1

3

−
,

f(x) → −∞,x → 5
2

−
, f(x) → ∞,x → 5

2

+, f(x) → −∞

 
End behavior: x → ±∞, f(x) → 1

3

For the following exercises, find the slant asymptote of the functions.
Exercise:

Problem:f(x) = 24x2+6x
2x+1

Exercise:

Problem:f(x) = 4x2−10
2x−4

Solution:

y = 2x + 4

Exercise:

Problem:f(x) = 81x2−18
3x−2

Exercise:

Problem:f(x) = 6x3−5x
3x2+4

Solution:

y = 2x



Exercise:

Problem:f(x) = x2+5x+4
x−1

Graphical

For the following exercises, use the given transformation to graph the
function. Note the vertical and horizontal asymptotes.
Exercise:

Problem:The reciprocal function shifted up two units.

Solution:

V .A.  x = 0,H.A.  y = 2

Exercise:



Problem:

The reciprocal function shifted down one unit and left three units.

Exercise:

Problem:The reciprocal squared function shifted to the right 2 units.

Solution:

V .A.  x = 2,  H.A.  y = 0

Exercise:

Problem:

The reciprocal squared function shifted down 2 units and right 1 unit.

For the following exercises, find the horizontal intercepts, the vertical
intercept, the vertical asymptotes, and the horizontal or slant asymptote of
the functions. Use that information to sketch a graph.
Exercise:



Problem:p (x) = 2x−3
x+4

Solution:

V .A.  x = −4,  H.A.  y = 2; ( 3
2 , 0); (0, − 3

4 )

Exercise:

Problem:q (x) = x−5
3x−1

Exercise:

Problem:s (x) = 4

(x−2)2

Solution:

V .A.  x = 2,  H.A.  y = 0,  (0, 1)



Exercise:

Problem:r (x) = 5

(x+1)2

Exercise:

Problem:f (x) = 3x2−14x−5
3x2+8x−16

Solution:

V .A.  x = −4,  x = 4
3 ,  H.A.  y = 1; (5, 0); (− 1

3 , 0); (0, 5
16 )



Exercise:

Problem:g (x) = 2x2+7x−15
3x2−14+15

Exercise:

Problem:a (x) = x2+2x−3
x2−1

Solution:

V .A.  x = −1,  H.A.  y = 1; (−3, 0); (0, 3)



Exercise:

Problem:b (x) = x2−x−6
x2−4

Exercise:

Problem:h (x) = 2x2+ x−1
x−4

Solution:

V .A.  x = 4,  S.A.  y = 2x + 9; (−1, 0); ( 1
2 , 0); (0, 1

4 )



Exercise:

Problem:k (x) = 2x2−3x−20
x−5

Exercise:

Problem:w (x) =
(x−1)(x+3)(x−5)

(x+2)2(x−4)

Solution:

V .A.  x = −2,  x = 4,  H.A.  y = 1, (1, 0); (5, 0); (−3, 0); (0, − 15
16

)



Exercise:

Problem:z (x) =
(x+2)2(x−5)

(x−3)(x+1)(x+4)

For the following exercises, write an equation for a rational function with
the given characteristics.
Exercise:

Problem:

Vertical asymptotes atx = 5 andx = −5, x-intercepts at (2, 0) and
(−1, 0), y-intercept at (0, 4)

Solution:

y = 50 x2−x−2
x2−25



Exercise:

Problem:

Vertical asymptotes atx = −4 andx = −1, x-intercepts at (1, 0) and
(5, 0), y-intercept at (0, 7)

Exercise:

Problem:

Vertical asymptotes atx = −4 andx = −5, x-intercepts at (4, 0) and
(−6, 0), Horizontal asymptote at y = 7

Solution:

y = 7 x2+2x−24
x2+9x+20

Exercise:

Problem:

Vertical asymptotes atx = −3 andx = 6, x-intercepts at (−2, 0) and
(1, 0), Horizontal asymptote at y = −2

Exercise:

Problem:

Vertical asymptote atx = −1, Double zero atx = 2, y-intercept at
(0, 2)

Solution:

y = 1
2

x2−4x+4
x+1

Exercise:

Problem:

Vertical asymptote atx = 3, Double zero atx = 1, y-intercept at
(0, 4)



For the following exercises, use the graphs to write an equation for the
function.
Exercise:

Problem:

Solution:

y = 4 x−3
x2−x−12

Exercise:

Problem:



Exercise:

Problem:

Solution:

y = −9 x−2
x2−9



Exercise:

Problem:

Exercise:

Problem:



Solution:

y = 1
3

x2+x−6
x−1

Exercise:

Problem:

Exercise:

Problem:



Solution:

y = −6
(x−1)2

(x+3)(x−2)2

Exercise:

Problem:



Numeric

For the following exercises, make tables to show the behavior of the
function near the vertical asymptote and reflecting the horizontal asymptote
Exercise:

Problem:f(x) = 1
x−2

Solution:

x 2.01 2.001 2.0001 1.99 1.999

y 100 1,000 10,000 –100 –1,000

x 10 100 1,000 10,000 100,000

y .125 .0102 .001 .0001 .00001

Vertical asymptotex = 2, Horizontal asymptote y = 0

Exercise:



Problem:f(x) = x
x−3

Exercise:

Problem:f(x) = 2x
x+4

Solution:

x –4.1 –4.01 –4.001 –3.99 –3.999

y 82 802 8,002 –798 –7998

x 10 100 1,000 10,000 100,000

y 1.4286 1.9331 1.992 1.9992 1.999992

Vertical asymptotex = −4, Horizontal asymptote y = 2

Exercise:

Problem:f(x) = 2x

(x−3)2

Exercise:



Problem:f(x) = x2

x2+2x+1

Solution:

x –.9 –.99 –.999 –1.1 –1.01

y 81 9,801 998,001 121 10,201

x 10 100 1,000 10,000 100,000

y .82645 .9803 .998 .9998

Vertical asymptotex = −1, Horizontal asymptote y = 1

Technology

For the following exercises, use a calculator to graph f (x). Use the graph
to solve f (x) > 0.
Exercise:

Problem:f(x) = 2
x+1



Exercise:

Problem:f(x) = 4
2x−3

Solution:

( 3
2 , ∞)

Exercise:

Problem:f(x) = 2
(x−1)(x+2)

Exercise:

Problem:f(x) = x+2
(x−1)(x−4)

Solution:

(−2, 1) ∪ (4, ∞)



Exercise:

Problem:f(x) =
(x+3)2

(x−1)2(x+1)

Extensions

For the following exercises, identify the removable discontinuity.
Exercise:

Problem:f(x) = x2−4
x−2

Solution:

(2, 4)

Exercise:

Problem:f(x) = x3+1
x+1



Exercise:

Problem:f(x) = x2+x−6
x−2

Solution:

(2, 5)

Exercise:

Problem:f(x) = 2x2+5x−3
x+3

Exercise:

Problem:f(x) = x3+x2

x+1

Solution:

(– 1, 1)

Real-World Applications

For the following exercises, express a rational function that describes the
situation.
Exercise:

Problem: 

A large mixing tank currently contains 200 gallons of water, into
which 10 pounds of sugar have been mixed. A tap will open, pouring
10 gallons of water per minute into the tank at the same time sugar is
poured into the tank at a rate of 3 pounds per minute. Find the
concentration (pounds per gallon) of sugar in the tank after tminutes.

Exercise:



Problem:

A large mixing tank currently contains 300 gallons of water, into
which 8 pounds of sugar have been mixed. A tap will open, pouring 20
gallons of water per minute into the tank at the same time sugar is
poured into the tank at a rate of 2 pounds per minute. Find the
concentration (pounds per gallon) of sugar in the tank after tminutes.

Solution:

C(t) = 8+2t
300+20t

For the following exercises, use the given rational function to answer the
question.
Exercise:

Problem:

The concentrationC of a drug in a patient’s bloodstream t hours after
injection in given byC(t) = 2t

3+t2 . What happens to the concentration
of the drug as t increases?

Exercise:

Problem:

The concentrationC of a drug in a patient’s bloodstream hours after
injection is given byC(t) = 100t

2t2+75
. Use a calculator to approximate

the time when the concentration is highest.

Solution:

After about 6.12 hours.

For the following exercises, construct a rational function that will help
solve the problem. Then, use a calculator to answer the question.
Exercise:

t



Problem:

An open box with a square base is to have a volume of 108 cubic
inches. Find the dimensions of the box that will have minimum surface
area. Letx = length of the side of the base.

Exercise:

Problem:

A rectangular box with a square base is to have a volume of 20 cubic
feet. The material for the base costs 30 cents/ square foot. The material
for the sides costs 10 cents/square foot. The material for the top costs
20 cents/square foot. Determine the dimensions that will yield
minimum cost. Letx = length of the side of the base.

Solution:

A(x) = 50x2 + 800
x

. 2 by 2 by 5 feet.

Exercise:

Problem:

A right circular cylinder has volume of 100 cubic inches. Find the
radius and height that will yield minimum surface area. Letx = radius.

Exercise:

Problem:

A right circular cylinder with no top has a volume of 50 cubic meters.
Find the radius that will yield minimum surface area. Letx = radius.

Solution:

A(x) = πx2 + 100
x

. Radius = 2.52 meters.

Exercise:



Problem:

A right circular cylinder is to have a volume of 40 cubic inches. It
costs 4 cents/square inch to construct the top and bottom and 1
cent/square inch to construct the rest of the cylinder. Find the radius to
yield minimum cost. Letx = radius.

Glossary

arrow notation
a way to symbolically represent the local and end behavior of a
function by using arrows to indicate that an input or output approaches
a value

horizontal asymptote
a horizontal line y = bwhere the graph approaches the line as the
inputs increase or decrease without bound.

rational function
a function that can be written as the ratio of two polynomials

removable discontinuity
a single point at which a function is undefined that, if filled in, would
make the function continuous; it appears as a hole on the graph of a
function

vertical asymptote
a vertical linex = awhere the graph tends toward positive or negative
infinity as the inputs approach a



Inverses and Radical Functions
In this section, you will:

Find the inverse of a polynomial function.
Restrict the domain to find the inverse of a polynomial function.

A mound of gravel is in the shape of a cone with the height equal to twice
the radius.

The volume is found using a formula from elementary geometry.
Equation:

We have written the volume V in terms of the radius r. However, in some
cases, we may start out with the volume and want to find the radius. For

V = 1
3 πr2h

    = 1
3 πr2(2r)

    = 2
3 πr3



example: A customer purchases 100 cubic feet of gravel to construct a cone
shape mound with a height twice the radius. What are the radius and height
of the new cone? To answer this question, we use the formula
Equation:

r =
3√ 3V

2π

This function is the inverse of the formula for V in terms of r.

In this section, we will explore the inverses of polynomial and rational
functions and in particular the radical functions we encounter in the
process.

Finding the Inverse of a Polynomial Function

Two functions f and g are inverse functions if for every coordinate pair in
f,  (a,  b), there exists a corresponding coordinate pair in the inverse
function, g, (b, a). In other words, the coordinate pairs of the inverse
functions have the input and output interchanged.

For a function to have an inverse function the function to create a new
function that is one-to-one and would have an inverse function.

For example, suppose a water runoff collector is built in the shape of a
parabolic trough as shown in [link]. We can use the information in the
figure to find the surface area of the water in the trough as a function of the
depth of the water.



Because it will be helpful to have an equation for the parabolic cross-
sectional shape, we will impose a coordinate system at the cross section,
with x measured horizontally and y measured vertically, with the origin at
the vertex of the parabola. See [link].



From this we find an equation for the parabolic shape. We placed the origin
at the vertex of the parabola, so we know the equation will have form
y(x) = ax2. Our equation will need to pass through the point (6, 18), from
which we can solve for the stretch factor a.
Equation:

Our parabolic cross section has the equation
Equation:

18 = a62

 a = 18
36

      = 1
2



y(x) =
1

2
x2

We are interested in the surface area of the water, so we must determine the
width at the top of the water as a function of the water depth. For any depth
y the width will be given by 2x, so we need to solve the equation above for
x and find the inverse function. However, notice that the original function
is not one-to-one, and indeed, given any output there are two inputs that
produce the same output, one positive and one negative.

To find an inverse, we can restrict our original function to a limited domain
on which it is one-to-one. In this case, it makes sense to restrict ourselves to
positive x values. On this domain, we can find an inverse by solving for the
input variable:
Equation:

This is not a function as written. We are limiting ourselves to positive x
values, so we eliminate the negative solution, giving us the inverse function
we’re looking for.
Equation:

y =
x2

2
,  x > 0

Because x is the distance from the center of the parabola to either side, the
entire width of the water at the top will be 2x. The trough is 3 feet (36
inches) long, so the surface area will then be:
Equation:

y = 1
2 x2

2y = x2

  x = ±√2y



This example illustrates two important points:

1. When finding the inverse of a quadratic, we have to limit ourselves to
a domain on which the function is one-to-one.

2. The inverse of a quadratic function is a square root function. Both are
toolkit functions and different types of power functions.

Functions involving roots are often called radical functions. While it is not
possible to find an inverse of most polynomial functions, some basic
polynomials do have inverses. Such functions are called invertible
functions, and we use the notation f −1(x).

Warning: f −1(x) is not the same as the reciprocal of the function f (x).
This use of “–1” is reserved to denote inverse functions. To denote the
reciprocal of a function f (x), we would need to write (f (x))−1 = 1

f(x)
.

An important relationship between inverse functions is that they “undo”
each other. If f −1 is the inverse of a function f,  then f is the inverse of the
function f −1. In other words, whatever the function f does to x, f −1

undoes it—and vice-versa. More formally, we write
Equation:

f −1 (f (x)) = x, for all x in the domain of f

and
Equation:

f (f −1 (x)) = x, for all x in the domain of f −1

Area = l ⋅ w

         = 36 ⋅ 2x

         = 72x

         = 72√2y



Note:
Verifying Two Functions Are Inverses of One Another
Two functions, f  and g, are inverses of one another if for all x in the
domain of f  and g.
Equation:

g (f (x)) = f (g (x)) = x

Note:
Given a polynomial function, find the inverse of the function by
restricting the domain in such a way that the new function is one-to-
one.

1. Replace f (x) with y.
2. Interchange x and y.
3. Solve for y, and rename the function f −1(x).

Example:
Exercise:

Problem:
Verifying Inverse Functions

Show that f (x) = 1
x+1 and f −1 (x) = 1

x
− 1 are inverses, for

x ≠ 0, −1.

Solution:

We must show that f −1 (f (x)) = x and f (f −1 (x)) = x.
Equation:



Therefore, f (x) = 1
x+1  and f −1 (x) = 1

x
− 1 are inverses.

Note:
Exercise:

Problem:Show that f (x) = x+5
3  and f −1 (x) = 3x − 5 are inverses.

Solution:

f −1 (f (x)) = f −1 ( x+5
3 ) = 3 ( x+5

3 ) − 5 = (x − 5) + 5 = x and
f (f −1 (x)) = f (3x − 5) = (3x−5)+5

3
= 3x

3
= x

Example:
Exercise:

Problem:
Finding the Inverse of a Cubic Function

f −1(f(x)) = f −1 ( 1
x+1 )

                 = 1
1

x+1

− 1

                 = (x + 1) − 1

                 = x

f(f −1(x)) = f ( 1
x

− 1)

                 = 1
( 1

x
−1)+1

                 = 1
1
x

                 = x



Find the inverse of the function f(x) = 5x3 + 1.

Solution:

This is a transformation of the basic cubic toolkit function, and based
on our knowledge of that function, we know it is one-to-one. Solving
for the inverse by solving for x.
Equation:

Analysis

Look at the graph of f and f –1. Notice that the two graphs are symmetrical
about the line y = x. This is always the case when graphing a function and
its inverse function.

Also, since the method involved interchanging x and y, notice
corresponding points. If (a, b) is on the graph of f,then (b, a) is on the
graph of f –1. Since (0, 1) is on the graph of f, then (1, 0) is on the graph of
f –1. Similarly, since (1, 6) is on the graph of f,then (6, 1) is on the graph
of f –1. See [link].

         x = 5y3 + 1

   x − 1 = 5y3

   x−1
5

= y3

f −1(x) = 3√ x−1
5

         y = 5x3 + 1



Note:
Exercise:

Problem:Find the inverse function of f(x) = 3√x + 4.

Solution:

f −1(x) = x3 − 4



Restricting the Domain to Find the Inverse of a Polynomial
Function

So far, we have been able to find the inverse functions of cubic functions
without having to restrict their domains. However, as we know, not all cubic
polynomials are one-to-one. Some functions that are not one-to-one may
have their domain restricted so that they are one-to-one, but only over that
domain. The function over the restricted domain would then have an
inverse function. Since quadratic functions are not one-to-one, we must
restrict their domain in order to find their inverses.

Note:
Restricting the Domain
If a function is not one-to-one, it cannot have an inverse. If we restrict the
domain of the function so that it becomes one-to-one, thus creating a new
function, this new function will have an inverse.

Note:
Given a polynomial function, restrict the domain of a function that is
not one-to-one and then find the inverse.

1. Restrict the domain by determining a domain on which the original
function is one-to-one.

2. Replace f(x) with y.
3. Interchange x and y.
4. Solve for y, and rename the function or pair of function f −1(x).
5. Revise the formula for f −1(x) by ensuring that the outputs of the

inverse function correspond to the restricted domain of the original
function.



Example:
Exercise:

Problem:
Restricting the Domain to Find the Inverse of a Polynomial
Function

Find the inverse function of f :

a. f(x) = (x − 4)2,  x ≥ 4
b. f(x) = (x − 4)2,  x ≤ 4

Solution:

The original function f(x) = (x − 4)2 is not one-to-one, but the
function is restricted to a domain of x ≥ 4 or x ≤ 4 on which it is
one-to-one. See [link].



To find the inverse, start by replacing f(x) with the simple variable y.
Equation:



This is not a function as written. We need to examine the restrictions
on the domain of the original function to determine the inverse. Since
we reversed the roles of x and y for the original f(x), we looked at the
domain: the values x  could assume. When we reversed the roles of x
and y,  this gave us the values y could assume. For this function,
x ≥ 4, so for the inverse, we should have y ≥ 4, which is what our
inverse function gives.

a. The domain of the original function was restricted to x ≥ 4, so
the outputs of the inverse need to be the same, f (x) ≥ 4, and we
must use the + case:
Equation:

f −1(x) = 4 + √x

b. The domain of the original function was restricted to x ≤ 4, so
the outputs of the inverse need to be the same, f (x) ≤ 4, and we
must use the – case:
Equation:

f −1(x) = 4 − √x

Analysis

On the graphs in [link], we see the original function graphed on the same
set of axes as its inverse function. Notice that together the graphs show
symmetry about the line y = x. The coordinate pair (4,  0) is on the graph
of f and the coordinate pair (0,  4) is on the graph of f −1. For any
coordinate pair, if (a,  b) is on the graph of f, then (b,  a) is on the graph

y = (x − 4)2 Interchange x and y.

x = (y − 4)2 Take the square root.

± √x = y − 4  Add 4 to both sides.

4 ± √x = y



of f −1. Finally, observe that the graph of f intersects the graph of f −1on
the line y = x. Points of intersection for the graphs of f and f −1 will
always lie on the line y = x.

Example:
Exercise:

Problem:
Finding the Inverse of a Quadratic Function When the
Restriction Is Not Specified

Restrict the domain and then find the inverse of
Equation:

f(x) = (x − 2)2 − 3.

Solution:

We can see this is a parabola with vertex at (2,  – 3) that opens
upward. Because the graph will be decreasing on one side of the
vertex and increasing on the other side, we can restrict this function to
a domain on which it will be one-to-one by limiting the domain to
x ≥ 2.



To find the inverse, we will use the vertex form of the quadratic. We
start by replacing f(x) with a simple variable, y, then solve for x.
Equation:

Now we need to determine which case to use. Because we restricted
our original function to a domain of x ≥ 2, the outputs of the inverse
should be the same, telling us to utilize the + case
Equation:

f −1(x) = 2 + √x + 3

If the quadratic had not been given in vertex form, rewriting it into
vertex form would be the first step. This way we may easily observe
the coordinates of the vertex to help us restrict the domain.

Analysis

Notice that we arbitrarily decided to restrict the domain on x ≥ 2. We
could just have easily opted to restrict the domain on x ≤ 2, in which case
f −1(x) = 2 − √x + 3. Observe the original function graphed on the
same set of axes as its inverse function in [link]. Notice that both graphs
show symmetry about the line y = x. The coordinate pair (2,   − 3) is on
the graph of f and the coordinate pair (−3,  2) is on the graph of f −1.
Observe from the graph of both functions on the same set of axes that
Equation:

x = (y − 2)2 − 3 Add 3 to both sides.

x + 3 = (y − 2)2 Take the square root.

± √x + 3 = y − 2 Add 2 to both sides.

2 ± √x + 3 = y Rename the function.

f −1(x) = 2 ± √x + 3

y = (x − 2)2 − 3 Interchange x and y.



domain of f = range of f –1 = [2, ∞)

and
Equation:

domain of f –1 = range of f = [– 3, ∞)

Finally, observe that the graph of f intersects the graph of f −1 along the
line y = x.

Note:
Exercise:



Problem:

Find the inverse of the function f(x) = x2 + 1, on the domain x ≥ 0.

Solution:

f −1(x) = √x − 1

Solving Applications of Radical Functions

Notice that the functions from previous examples were all polynomials, and
their inverses were radical functions. If we want to find the inverse of a
radical function, we will need to restrict the domain of the answer because
the range of the original function is limited.

Note:
Given a radical function, find the inverse.

1. Determine the range of the original function.
2. Replace f (x)  with y, then solve for x.
3. If necessary, restrict the domain of the inverse function to the range of

the original function.

Example:
Exercise:

Problem:
Finding the Inverse of a Radical Function

Restrict the domain and then find the inverse of the function
f(x) = √x − 4.



Solution:

Note that the original function has range f(x) ≥ 0. Replace f(x) with
y, then solve for x.
Equation:

Recall that the domain of this function must be limited to the range of
the original function.
Equation:

f −1(x) = x2 + 4, x ≥ 0

Analysis

Notice in [link] that the inverse is a reflection of the original function over
the line y = x. Because the original function has only positive outputs, the
inverse function has only positive inputs.

y = √x − 4 Replacef(x)withy.

x = √y − 4 Interchangexandy.

x = √y − 4 Square each side.

x2 = y − 4 Add 4.

x2 + 4 = y Rename the functionf −1(x).

f −1(x) = x2 + 4



Note:
Exercise:

Problem:

Restrict the domain and then find the inverse of the function
f(x) = √2x + 3.

Solution:

f −1(x) = x2−3
2

, x ≥ 0



Radical functions are common in physical models, as we saw in the section
opener. We now have enough tools to be able to solve the problem posed at
the start of the section.

Example:
Exercise:

Problem:
Solving an Application with a Cubic Function

A mound of gravel is in the shape of a cone with the height equal to
twice the radius. The volume of the cone in terms of the radius is
given by
Equation:

V =
2

3
πr3

Find the inverse of the function V = 2
3 πr3 that determines the

volume V of a cone and is a function of the radius r. Then use the
inverse function to calculate the radius of such a mound of gravel
measuring 100 cubic feet. Use π = 3.14.

Solution:

Start with the given function for V . Notice that the meaningful
domain for the function is r ≥ 0 since negative radii would not make
sense in this context. Also note the range of the function (hence, the
domain of the inverse function) is V ≥ 0. Solve for r in terms of V ,
using the method outlined previously. 
Equation:



This is the result stated in the section opener. Now evaluate this for
V = 100 and π = 3.14.
Equation:

Therefore, the radius is about 3.63 ft.

Determining the Domain of a Radical Function Composed with Other
Functions

When radical functions are composed with other functions, determining
domain can become more complicated.

Example:
Exercise:

Problem:

V = 2
3 πr3

r3 = 3V
2π

Solve for r3.

r = 3√ 3V
2π

Solve for r.

= 3√ 3⋅100
2⋅3.14

≈ 3√47.7707

   ≈ 3.63

r = 3√ 3V
2π

     



Finding the Domain of a Radical Function Composed with a
Rational Function

Find the domain of the function f(x) = √ (x+2)(x−3)
(x−1)

.

Solution:

Because a square root is only defined when the quantity under the
radical is non-negative, we need to determine where (x+2)(x−3)

(x−1)
≥ 0.

The output of a rational function can change signs (change from
positive to negative or vice versa) at x-intercepts and at vertical
asymptotes. For this equation, the graph could change signs at x = –2,
1, and 3.

To determine the intervals on which the rational expression is
positive, we could test some values in the expression or sketch a
graph. While both approaches work equally well, for this example we
will use a graph as shown in [link].

This function has two x-intercepts, both of which exhibit linear
behavior near the x-intercepts. There is one vertical asymptote,



corresponding to a linear factor; this behavior is similar to the basic
reciprocal toolkit function, and there is no horizontal asymptote
because the degree of the numerator is larger than the degree of the
denominator. There is a y-intercept at (0, √6).

From the y-intercept and x-intercept at x = −2, we can sketch the left
side of the graph. From the behavior at the asymptote, we can sketch
the right side of the graph.

From the graph, we can now tell on which intervals the outputs will
be non-negative, so that we can be sure that the original function
f (x) will be defined. f (x) has domain − 2 ≤ x < 1 or x ≥ 3, or in
interval notation, [−2, 1) ∪ [3, ∞).

Finding Inverses of Rational Functions

As with finding inverses of quadratic functions, it is sometimes desirable to
find the inverse of a rational function, particularly of rational functions that
are the ratio of linear functions, such as in concentration applications.

Example:
Exercise:

Problem:
Finding the Inverse of a Rational Function

The function C = 20+0.4n
100+n

represents the concentration C of an acid
solution after n mL of 40% solution has been added to 100 mL of a
20% solution. First, find the inverse of the function; that is, find an
expression for n in terms of C. Then use your result to determine how
much of the 40% solution should be added so that the final mixture is
a 35% solution.

Solution:



We first want the inverse of the function. We will solve for n in terms
of C.
Equation:

Now evaluate this function for C = 0.35 (35%).
Equation:

We can conclude that 300 mL of the 40% solution should be added.

Note:
Exercise:

Problem:Find the inverse of the function f(x) = x+3
x−2

.

Solution:

f −1(x) = 2x+3
x−1

C = 20+0.4n
100+n

C(100 + n) = 20 + 0.4n

100C + Cn = 20 + 0.4n

100C − 20 = 0.4n − Cn

100C − 20 = (0.4 − C)n

n = 100C−20
0.4−C

n =
100(0.35)−20

0.4−0.35

= 15
0.05

= 300



Note:
Access these online resources for additional instruction and practice with
inverses and radical functions.

Graphing the Basic Square Root Function
Find the Inverse of a Square Root Function
Find the Inverse of a Rational Function
Find the Inverse of a Rational Function and an Inverse Function Value
Inverse Functions

Key Concepts

The inverse of a quadratic function is a square root function.
If f −1  is the inverse of a function f,  then f  is the inverse of the
function f −1.  See [link].
While it is not possible to find an inverse of most polynomial
functions, some basic polynomials are invertible. See [link].
To find the inverse of certain functions, we must restrict the function to
a domain on which it will be one-to-one. See [link] and [link].
When finding the inverse of a radical function, we need a restriction on
the domain of the answer. See [link] and [link].
Inverse and radical and functions can be used to solve application
problems. See [link] and [link].

Section Exercises

Verbal

Exercise:

Problem:

Explain why we cannot find inverse functions for all polynomial
functions.

http://openstaxcollege.org/l/graphsquareroot
http://openstaxcollege.org/l/inversesquare
http://openstaxcollege.org/l/inverserational
http://openstaxcollege.org/l/rationalinverse
http://openstaxcollege.org/l/inversefunction


Solution:

It can be too difficult or impossible to solve for x in terms of y.

Exercise:

Problem:

Why must we restrict the domain of a quadratic function when finding
its inverse?

Exercise:

Problem:

When finding the inverse of a radical function, what restriction will we
need to make?

Solution:

We will need a restriction on the domain of the answer.

Exercise:

Problem:

The inverse of a quadratic function will always take what form?

Algebraic

For the following exercises, find the inverse of the function on the given
domain.
Exercise:

Problem:f (x) = (x − 4)2,  [4, ∞)

Solution:

f −1(x) = √x + 4



Exercise:

Problem:f (x) = (x + 2)2,  [−2, ∞)

Exercise:

Problem:f(x) = (x + 1)2 − 3,  [−1, ∞)

Solution:

f −1(x) = √x + 3 − 1

Exercise:

Problem:f(x) = 2 − √3 + x

Exercise:

Problem:f(x) = 3x2 + 5, (−∞, 0]

Solution:

f −1(x) = −√ x−5
3

Exercise:

Problem:f (x) = 12 − x2,  [0, ∞)

Exercise:

Problem:f (x) = 9 − x2,  [0, ∞)

Solution:

f(x) = √9 − x

Exercise:



Problem:f(x) = 2x2 + 4,  [0, ∞)

For the following exercises, find the inverse of the functions.
Exercise:

Problem:f(x) = x3 + 5

Solution:

f −1(x) = 3√x − 5

Exercise:

Problem:f (x) = 3x3 + 1

Exercise:

Problem:f(x) = 4 − x3

Solution:

f −1(x) = 3√4 − x

Exercise:

Problem:f (x) = 4 − 2x3

For the following exercises, find the inverse of the functions.
Exercise:

Problem:f(x) = √2x + 1

Solution:

f −1(x) = x2−1
2

, [0, ∞)



Exercise:

Problem:f(x) = √3 − 4x

Exercise:

Problem:f (x) = 9 + √4x − 4

Solution:

f −1(x) =
(x−9)2+4

4 , [9, ∞)

Exercise:

Problem:f (x) = √6x − 8 + 5

Exercise:

Problem:f (x) = 9 + 2 3√x

Solution:

f −1(x) = ( x−9
2 )

3

Exercise:

Problem:f (x) = 3 − 3√x

Exercise:

Problem:f (x) = 2
x+8

Solution:

f −1(x) = 2−8x
x

Exercise:



Problem:f (x) = 3
x−4

Exercise:

Problem:f (x) = x+3
x+7

Solution:

f −1(x) = 7x−3
1−x

Exercise:

Problem:f (x) = x−2
x+7

Exercise:

Problem:f (x) = 3x+4
5−4x

Solution:

f −1(x) = 5x−4
4x+3

Exercise:

Problem:f (x) = 5x+1
2−5x

Exercise:

Problem:f(x) = x2 + 2x,  [−1, ∞)

Solution:

f −1(x) = √x + 1 − 1

Exercise:



Problem:f(x) = x2 + 4x + 1,  [−2, ∞)

Exercise:

Problem:f(x) = x2 − 6x + 3,  [3, ∞)

Solution:

f −1(x) = √x + 6 + 3

Graphical

For the following exercises, find the inverse of the function and graph both
the function and its inverse.
Exercise:

Problem:f(x) = x2 + 2, x ≥ 0

Exercise:

Problem:f(x) = 4 − x2, x ≥ 0

Solution:

f −1(x) = √4 − x



Exercise:

Problem:f(x) = (x + 3)2, x ≥ −3

Exercise:

Problem:f(x) = (x − 4)2, x ≥ 4

Solution:

f −1(x) = √x + 4



Exercise:

Problem:f(x) = x3 + 3

Exercise:

Problem:f(x) = 1 − x3

Solution:

f −1(x) = 3√1 − x



Exercise:

Problem:f(x) = x2 + 4x, x ≥ −2

Exercise:

Problem:f(x) = x2 − 6x + 1, x ≥ 3

Solution:

f −1(x) = √x + 8 + 3



Exercise:

Problem:f(x) = 2
x

Exercise:

Problem:f(x) = 1
x2 , x ≥ 0

Solution:

f −1(x) = √ 1
x



For the following exercises, use a graph to help determine the domain of the
functions.
Exercise:

Problem:f(x) = √ (x+1)(x−1)
x

Exercise:

Problem:f(x) = √ (x+2)(x−3)
x−1

Solution:

[−2, 1) ∪ [3, ∞)



Exercise:

Problem:f(x) = √ x(x+3)
x−4

Exercise:

Problem:f(x) = √ x2−x−20
x−2

Solution:

[−4, 2) ∪ [5, ∞)



Exercise:

Problem:f(x) = √ 9−x2

x+4

Technology

For the following exercises, use a calculator to graph the function. Then,
using the graph, give three points on the graph of the inverse with y-
coordinates given.
Exercise:

Problem:f(x) = x3 − x − 2, y = 1,  2,  3

Solution:

(– 2,  0);  (4,  2);  (22,  3)



Exercise:

Problem:f(x) = x3 + x − 2,  y = 0,  1,  2

Exercise:

Problem:f(x) = x3 + 3x − 4,  y = 0,  1,  2

Solution:

(– 4,  0);  (0,  1);  (10,  2)



Exercise:

Problem:f(x) = x3 + 8x − 4,  y = −1,  0,  1

Exercise:

Problem:f(x) = x4 + 5x + 1,  y = −1,  0,  1

Solution:

(– 3,   − 1);  (1,  0);  (7,  1)

Extensions

For the following exercises, find the inverse of the functions with a, b, c
positive real numbers.
Exercise:

Problem:f(x) = ax3 + b

Exercise:



Problem:f(x) = x2 + bx

Solution:

f −1(x) = √x + b2

4
− b

2

Exercise:

Problem:f(x) = √ax2 + b

Exercise:

Problem:f(x) = 3√ax + b

Solution:

f −1(x) = x3−b
a

Exercise:

Problem:f(x) = ax+b
x+c

Real-World Applications

For the following exercises, determine the function described and then use
it to answer the question.
Exercise:

Problem:

An object dropped from a height of 200 meters has a height, h (t), in
meters after t seconds have lapsed, such that h(t) = 200 − 4.9t2.
Express t as a function of height, h, and find the time to reach a height
of 50 meters.



Solution:

t(h) = √ 200−h
4.9 , 5.53 seconds

Exercise:

Problem:

An object dropped from a height of 600 feet has a height, h (t), in feet
after t seconds have elapsed, such that h(t) = 600 − 16t2. Express t

as a function of height h, and find the time to reach a height of 400
feet.

Exercise:

Problem:

The volume, V , of a sphere in terms of its radius, r, is given by
V (r) = 4

3 πr3. Express r as a function of V , and find the radius of a
sphere with volume of 200 cubic feet.

Solution:

r(V ) = 3√ 3V
4π

, 3.63 feet

Exercise:

Problem:

The surface area, A, of a sphere in terms of its radius, r, is given by
A(r) = 4πr2. Express r as a function of V , and find the radius of a
sphere with a surface area of 1000 square inches.

Exercise:



Problem:

A container holds 100 ml of a solution that is 25 ml acid. If n ml of a
solution that is 60% acid is added, the function C(n) = 25+.6n

100+n
gives

the concentration, C, as a function of the number of ml added, n.
Express n as a function of C and determine the number of mL that
need to be added to have a solution that is 50% acid.

Solution:

n(C) = 100C−25
.6−C

, 250 mL

Exercise:

Problem:

The period T , in seconds, of a simple pendulum as a function of its

length l, in feet, is given by T (l) = 2π√ l
32.2  . Express l as a function

of T and determine the length of a pendulum with period of 2 seconds.

Exercise:

Problem:

The volume of a cylinder , V , in terms of radius, r, and height, h, is
given by V = πr2h. If a cylinder has a height of 6 meters, express the
radius as a function of V and find the radius of a cylinder with volume
of 300 cubic meters.

Solution:

r(V ) = √ V
6π

, 3.99 meters

Exercise:



Problem:

The surface area, A, of a cylinder in terms of its radius, r, and height,
h, is given by A = 2πr2 + 2πrh. If the height of the cylinder is 4
feet, express the radius as a function of V and find the radius if the
surface area is 200 square feet.

Exercise:

Problem:

The volume of a right circular cone, V , in terms of its radius, r, and its
height, h, is given by V = 1

3 πr2h. Express r in terms of V if the
height of the cone is 12 feet and find the radius of a cone with volume
of 50 cubic inches.

Solution:

r(V ) = √ V
4π

, 1.99 inches

Exercise:

Problem:

Consider a cone with height of 30 feet. Express the radius, r, in terms
of the volume, V , and find the radius of a cone with volume of 1000
cubic feet.

Glossary

invertible function
any function that has an inverse function



Exponential Functions
In this section, you will:

Evaluate exponential functions.
Find the equation of an exponential function.
Use compound interest formulas.
Evaluate exponential functions with base e.

India is the second most populous country in the world with a population of about 1.25 billion people in
2013. The population is growing at a rate of about 1.2% each year[footnote]. If this rate continues, the
population of India will exceed China’s population by the year 2031.When populations grow rapidly, we
often say that the growth is “exponential,” meaning that something is growing very rapidly. To a
mathematician, however, the term exponential growth has a very specific meaning. In this section, we will
take a look at exponential functions, which model this kind of rapid growth.
http://www.worldometers.info/world-population/. Accessed February 24, 2014.

Identifying Exponential Functions

When exploring linear growth, we observed a constant rate of change—a constant number by which the
output increased for each unit increase in input. For example, in the equation f(x) = 3x + 4,the slope tells
us the output increases by 3 each time the input increases by 1. The scenario in the India population example
is different because we have a percent change per unit time (rather than a constant change) in the number of
people.

Defining an Exponential Function

A study found that the percent of the population who are vegans in the United States doubled from 2009 to
2011. In 2011, 2.5% of the population was vegan, adhering to a diet that does not include any animal
products—no meat, poultry, fish, dairy, or eggs. If this rate continues, vegans will make up 10% of the U.S.
population in 2015, 40% in 2019, and 80% in 2021.

What exactly does it mean to grow exponentially? What does the word double have in common with percent
increase? People toss these words around errantly. Are these words used correctly? The words certainly
appear frequently in the media.

Percent change refers to a change based on a percent of the original amount.
Exponential growth refers to an increase based on a constant multiplicative rate of change over equal
increments of time, that is, a percent increase of the original amount over time.
Exponential decay refers to a decrease based on a constant multiplicative rate of change over equal
increments of time, that is, a percent decrease of the original amount over time.

For us to gain a clear understanding of exponential growth, let us contrast exponential growth with linear
growth. We will construct two functions. The first function is exponential. We will start with an input of 0,
and increase each input by 1. We will double the corresponding consecutive outputs. The second function is
linear. We will start with an input of 0, and increase each input by 1. We will add 2 to the corresponding
consecutive outputs. See [link].



x f(x) = 2x g(x) = 2xx f(x) = 2x g(x) = 2x

0 1 0

1 2 2

2 4 4

3 8 6

4 16 8

5 32 10

6 64 12

From [link] we can infer that for these two functions, exponential growth dwarfs linear growth.

Exponential growth refers to the original value from the range increases by the same percentage over
equal increments found in the domain.
Linear growth refers to the original value from the range increases by the same amount over equal
increments found in the domain.

Apparently, the difference between “the same percentage” and “the same amount” is quite significant. For
exponential growth, over equal increments, the constant multiplicative rate of change resulted in doubling
the output whenever the input increased by one. For linear growth, the constant additive rate of change over
equal increments resulted in adding 2 to the output whenever the input was increased by one.

The general form of the exponential function is f(x) = abx, where a is any nonzero number, b is a positive
real number not equal to 1.

If b > 1,the function grows at a rate proportional to its size.
If 0 < b < 1, the function decays at a rate proportional to its size.

Let’s look at the function f(x) = 2x from our example. We will create a table ([link]) to determine the
corresponding outputs over an interval in the domain from−3 to 3.

x −3 −2 −1 0 1 2 3

f(x) = 2x 2−3 = 1
8 2−2 = 1

4 2−1 = 1
2 20 = 1 21 = 2 22 = 4 23 = 8

Let us examine the graph of f by plotting the ordered pairs we observe on the table in [link], and then make
a few observations.



Let’s define the behavior of the graph of the exponential function f(x) = 2x and highlight some its key
characteristics.

the domain is (−∞,∞),
the range is (0,∞),
as x → ∞, f(x) → ∞,
as x → −∞, f(x) → 0,
f(x) is always increasing,
the graph of f(x)will never touch the x-axis because base two raised to any exponent never has the
result of zero.
y = 0 is the horizontal asymptote.
the y-intercept is 1.

Note:
Exponential Function
For any real number x,an exponential function is a function with the form
Equation:

f(x) = abx

where

a is a non-zero real number called the initial value and
b is any positive real number such that b ≠ 1.
The domain of f is all real numbers.
The range of f is all positive real numbers if a > 0.
The range of f is all negative real numbers if a < 0.
The y-intercept is (0, a),and the horizontal asymptote is y = 0.



Example:
Exercise:

Problem:
Identifying Exponential Functions

Which of the following equations are not exponential functions?

f(x) = 43(x−2)

g(x) = x3

h(x) = ( 1
3 )

x

j(x) = (−2)x

Solution:

By definition, an exponential function has a constant as a base and an independent variable as an
exponent. Thus, g(x) = x3 does not represent an exponential function because the base is an
independent variable. In fact, g(x) = x3 is a power function.

Recall that the base b of an exponential function is always a positive constant, and b ≠ 1.Thus,
j(x) = (−2)x does not represent an exponential function because the base,−2, is less than 0.

Note:
Exercise:

Problem:Which of the following equations represent exponential functions?

f(x) = 2x2 − 3x + 1
g(x) = 0.875x

h(x) = 1.75x + 2
j(x) = 1095.6−2x

Solution:

g(x) = 0.875x andj(x) = 1095.6−2x represent exponential functions.

Evaluating Exponential Functions

Recall that the base of an exponential function must be a positive real number other than 1.Why do we limit
the base b to positive values? To ensure that the outputs will be real numbers. Observe what happens if the
base is not positive:

Let b = −9 and x = 1
2 . Then f(x) = f ( 1

2 ) = (−9)
1
2 = √−9,which is not a real number.

Why do we limit the base to positive values other than 1?Because base 1 results in the constant function.
Observe what happens if the base is 1 :



Let b = 1.Then f(x) = 1x = 1 for any value of x.

To evaluate an exponential function with the form f(x) = bx,we simply substitute x with the given value,
and calculate the resulting power. For example:

Let f(x) = 2x. What is f(3)?
Equation:

To evaluate an exponential function with a form other than the basic form, it is important to follow the order
of operations. For example:

Let f(x) = 30(2)x. What is f(3)?
Equation:

Note that if the order of operations were not followed, the result would be incorrect:
Equation:

f(3) = 30(2)3 ≠ 603 = 216,000

Example:
Exercise:

Problem:
Evaluating Exponential Functions

Let f (x) = 5(3)x+1. Evaluate f (2)without using a calculator.

Solution:

Follow the order of operations. Be sure to pay attention to the parentheses.
Equation:

f (x) = 2x

f (3) = 23  Substitute x = 3.

= 8  Evaluate the power.

f (x) = 30(2)x

f (3) = 30(2)3 Substitute x = 3.

= 30 (8)  Simplify the power first.

= 240 Multiply.

f (x) = 5(3)x+1

f (2) = 5(3)2+1 Substitute x = 2.

= 5(3)3 Add the exponents.

= 5 (27) Simplify the power.

= 135 Multiply.



Note:
Exercise:

Problem: Letf (x) = 8(1.2)x−5. Evaluate f (3) using a calculator. Round to four decimal places.

Solution:

5.5556

Defining Exponential Growth

Because the output of exponential functions increases very rapidly, the term “exponential growth” is often
used in everyday language to describe anything that grows or increases rapidly. However, exponential
growth can be defined more precisely in a mathematical sense. If the growth rate is proportional to the
amount present, the function models exponential growth.

Note:
Exponential Growth
A function that models exponential growth grows by a rate proportional to the amount present. For any
real number x and any positive real numbers a  and b such that b ≠ 1,an exponential growth function has the
form
Equation:

 f(x) = abx

where

a is the initial or starting value of the function.
b is the growth factor or growth multiplier per unit x.

In more general terms, we have an exponential function, in which a constant base is raised to a variable
exponent. To differentiate between linear and exponential functions, let’s consider two companies, A and B.
Company A has 100 stores and expands by opening 50 new stores a year, so its growth can be represented
by the function A (x) = 100 + 50x. Company B has 100 stores and expands by increasing the number of
stores by 50% each year, so its growth can be represented by the function B(x) = 100(1 + 0.5)x.

A few years of growth for these companies are illustrated in [link].



Year, x Stores, Company A Stores, Company BYear, x Stores, Company A Stores, Company B

0 100 + 50 (0) = 100 100(1 + 0.5)0 = 100

1 100 + 50 (1) = 150 100(1 + 0.5)1 = 150

2 100 + 50 (2) = 200 100(1 + 0.5)2 = 225

3 100 + 50 (3) = 250 100(1 + 0.5)3 = 337.5

x A (x) = 100 + 50x B(x) = 100(1 + 0.5)x

The graphs comparing the number of stores for each company over a five-year period are shown in [link].
We can see that, with exponential growth, the number of stores increases much more rapidly than with linear
growth.



Notice that the domain for both functions is [0,∞),and the range for both functions is [100,∞). After year
1, Company B always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B,
B(x) = 100(1 + 0.5)x. In this exponential function, 100 represents the initial number of stores, 0.50
represents the growth rate, and 1 + 0.5 = 1.5 represents the growth factor. Generalizing further, we can
write this function as B(x) = 100(1.5)x,where 100 is the initial value, 1.5 is called the base, and x is called
the exponent.

The graph shows the numbers of stores Companies A
and B opened over a five-year period.



Example:
Exercise:

Problem:
Evaluating a Real-World Exponential Model

At the beginning of this section, we learned that the population of India was about 1.25 billion in the
year 2013, with an annual growth rate of about 1.2%. This situation is represented by the growth
function P(t) = 1.25(1.012)t, where t  is the number of years since 2013.To the nearest thousandth,
what will the population of India be in 2031?

Solution:

To estimate the population in 2031, we evaluate the models for t = 18, because 2031 is 18 years after
2013. Rounding to the nearest thousandth,
Equation:

P(18) = 1.25(1.012)18 ≈ 1.549

There will be about 1.549 billion people in India in the year 2031.

Note:
Exercise:

Problem: 

The population of China was about 1.39 billion in the year 2013, with an annual growth rate of about
0.6%. This situation is represented by the growth function P(t) = 1.39(1.006)t, where t  is the
number of years since 2013.To the nearest thousandth, what will the population of China be for the
year 2031? How does this compare to the population prediction we made for India in [link]?

Solution:

About 1.548 billion people; by the year 2031, India’s population will exceed China’s by about 0.001
billion, or 1 million people.

Finding Equations of Exponential Functions

In the previous examples, we were given an exponential function, which we then evaluated for a given input.
Sometimes we are given information about an exponential function without knowing the function explicitly.
We must use the information to first write the form of the function, then determine the constants a and b,and
evaluate the function.

Note:
Given two data points, write an exponential model.



1. If one of the data points has the form (0, a), then a is the initial value. Using a, substitute the second
point into the equation f(x) = a(b)x, and solve for b.

2. If neither of the data points have the form (0, a), substitute both points into two equations with the
form f(x) = a(b)x. Solve the resulting system of two equations in two unknowns to find a and b.

3. Using the a and b found in the steps above, write the exponential function in the form f(x) = a(b)x.

Example:
Exercise:

Problem:
Writing an Exponential Model When the Initial Value Is Known

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180
deer. The population was growing exponentially. Write an algebraic function N(t) representing the
population (N) of deer over time t.

Solution:

We let our independent variable t be the number of years after 2006. Thus, the information given in the
problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input
variable to be measured as years after 2006, we have given ourselves the initial value for the function,
a = 80.We can now substitute the second point into the equation N(t) = 80bt to find b :
Equation:

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final
answer to four places for the remainder of this section.

The exponential model for the population of deer is N(t) = 80(1.1447)t. (Note that this exponential
function models short-term growth. As the inputs gets large, the output will get increasingly larger, so
much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that
the graph in [link] passes through the initial points given in the problem, (0,  80) and (6,  180). We
can also see that the domain for the function is [0,∞),and the range for the function is [80,∞).

N(t) = 80bt

180 = 80b6 Substitute using point (6,  180).
9
4 = b6 Divide and write in lowest terms.

b = ( 9
4
)

1
6 Isolate b using properties of exponents.

b ≈ 1.1447 Round to 4 decimal places.



Note:
Exercise:

Problem: 

A wolf population is growing exponentially. In 2011, 129wolves were counted. By 2013, the
population had reached 236 wolves. What two points can be used to derive an exponential equation
modeling this situation? Write the equation representing the population N of wolves over time t.

Solution:

(0, 129) and (2, 236); N(t) = 129(1.3526)t

Graph showing the population of deer over time,
N(t) = 80(1.1447)t,t years after 2006



Example:
Exercise:

Problem:
Writing an Exponential Model When the Initial Value is Not Known

Find an exponential function that passes through the points (−2, 6) and (2, 1).

Solution:

Because we don’t have the initial value, we substitute both points into an equation of the form
f(x) = abx, and then solve the system for a and b.

Substituting (−2, 6) gives 6 = ab−2

Substituting (2, 1) gives 1 = ab2

Use the first equation to solve for a in terms of b :  

Substitute a in the second equation, and solve for b :

Use the value of b in the first equation to solve for the value of a :  

Thus, the equation is f(x) = 2.4492(0.6389)x.

We can graph our model to check our work. Notice that the graph in [link] passes through the initial
points given in the problem, (−2,  6) and (2,  1). The graph is an example of an exponential decay
function.



Note:
Exercise:

Problem: 

Given the two points (1, 3) and (2, 4.5),find the equation of the exponential function that passes
through these two points.

Solution:

f(x) = 2(1.5)x

Note:
Do two points always determine a unique exponential function?
Yes, provided the two points are either both above the x-axis or both below the x-axis and have different x-
coordinates. But keep in mind that we also need to know that the graph is, in fact, an exponential function.
Not every graph that looks exponential really is exponential. We need to know the graph is based on a
model that shows the same percent growth with each unit increase in x, which in many real world cases
involves time.

Note:

The graph of f(x) = 2.4492(0.6389)x models
exponential decay.



Given the graph of an exponential function, write its equation.

1. First, identify two points on the graph. Choose the y-intercept as one of the two points whenever
possible. Try to choose points that are as far apart as possible to reduce round-off error.

2. If one of the data points is the y-intercept (0, a), then a is the initial value. Using a, substitute the
second point into the equation f(x) = a(b)x, and solve for b.

3. If neither of the data points have the form (0, a), substitute both points into two equations with the
form f(x) = a(b)x. Solve the resulting system of two equations in two unknowns to find a and b.

4. Write the exponential function, f(x) = a(b)x.

Example:
Exercise:

Problem:
Writing an Exponential Function Given Its Graph

Find an equation for the exponential function graphed in [link].

Solution:

We can choose the y-intercept of the graph, (0, 3), as our first point. This gives us the initial value,
a = 3.Next, choose a point on the curve some distance away from (0, 3) that has integer coordinates.
One such point is (2, 12).
Equation:

  y = abx Write the general form of an exponential equation.

  y = 3bx Substitute the initial value 3 for a.

12 = 3b2 Substitute in 12 for y and 2 for x.

  4 = b2 Divide by 3.

  b = ±2 Take the square root.



Because we restrict ourselves to positive values of b, we will use b = 2. Substitute a and b into the
standard form to yield the equation f(x) = 3(2)x.

Note:
Exercise:

Problem: Find an equation for the exponential function graphed in [link].

Solution:

f(x) = √2(√2)
x

. Answers may vary due to round-off error. The answer should be very close to
1.4142(1.4142)x.

Note:
Given two points on the curve of an exponential function, use a graphing calculator to find the
equation.

1. Press [STAT].
2. Clear any existing entries in columns L1 or L2.
3. In L1, enter the x-coordinates given.
4. In L2, enter the corresponding y-coordinates.
5. Press [STAT] again. Cursor right to CALC, scroll down to ExpReg (Exponential Regression), and

press [ENTER].
6. The screen displays the values of a and b in the exponential equation y = a ⋅ bx.

Example:
Exercise:

Problem:
Using a Graphing Calculator to Find an Exponential Function



Use a graphing calculator to find the exponential equation that includes the points (2, 24.8) and
(5, 198.4).

Solution:

Follow the guidelines above. First press [STAT], [EDIT], [1: Edit…], and clear the lists L1 and L2.
Next, in the L1 column, enter the x-coordinates, 2 and 5. Do the same in the L2 column for the y-
coordinates, 24.8 and 198.4.

Now press [STAT], [CALC], [0: ExpReg] and press [ENTER]. The values a = 6.2 and b = 2will be
displayed. The exponential equation is y = 6.2 ⋅ 2x.

Note:
Exercise:

Problem: 

Use a graphing calculator to find the exponential equation that includes the points (3, 75.98) and (6,
481.07).

Solution:

y ≈ 12 ⋅ 1.85x

Applying the Compound-Interest Formula

Savings instruments in which earnings are continually reinvested, such as mutual funds and retirement
accounts, use compound interest. The term compounding refers to interest earned not only on the original
value, but on the accumulated value of the account.

The annual percentage rate (APR) of an account, also called the nominal rate, is the yearly interest rate
earned by an investment account. The term nominal is used when the compounding occurs a number of
times other than once per year. In fact, when interest is compounded more than once a year, the effective
interest rate ends up being greater than the nominal rate! This is a powerful tool for investing.

We can calculate the compound interest using the compound interest formula, which is an exponential
function of the variables time t, principal P , APR r, and number of compounding periods in a year n :
Equation:

A(t) = P(1 +
r

n
)

nt

For example, observe [link], which shows the result of investing $1,000 at 10% for one year. Notice how the
value of the account increases as the compounding frequency increases.



Frequency Value after 1 year

Annually $1100

Semiannually $1102.50

Quarterly $1103.81

Monthly $1104.71

Daily $1105.16

Note:
The Compound Interest Formula
Compound interest can be calculated using the formula
Equation:

A(t) = P(1 +
r

n
)

nt

where

A(t) is the account value,
t is measured in years,
P is the starting amount of the account, often called the principal, or more generally present value,
r is the annual percentage rate (APR) expressed as a decimal, and
n is the number of compounding periods in one year.

Example:
Exercise:

Problem:
Calculating Compound Interest

If we invest $3,000 in an investment account paying 3% interest compounded quarterly, how much
will the account be worth in 10 years?

Solution:

Because we are starting with $3,000, P = 3000.Our interest rate is 3%, so r  =  0.03.Because we are
compounding quarterly, we are compounding 4 times per year, so n = 4.We want to know the value of
the account in 10 years, so we are looking for A (10),the value when t  =  10.
Equation:

A(t) = P(1 + r
n
)

nt
Use the compound interest formula.

A(10) = 3000(1 + 0.03
4

)
4⋅10

Substitute using given values.

≈ $4045.05 Round to two decimal places.



The account will be worth about $4,045.05 in 10 years.

Note:
Exercise:

Problem: 

An initial investment of $100,000 at 12% interest is compounded weekly (use 52 weeks in a year).
What will the investment be worth in 30 years?

Solution:

about $3,644,675.88

Example:
Exercise:

Problem:
Using the Compound Interest Formula to Solve for the Principal

A 529 Plan is a college-savings plan that allows relatives to invest money to pay for a child’s future
college tuition; the account grows tax-free. Lily wants to set up a 529 account for her new
granddaughter and wants the account to grow to $40,000 over 18 years. She believes the account will
earn 6% compounded semi-annually (twice a year). To the nearest dollar, how much will Lily need to
invest in the account now?

Solution:

The nominal interest rate is 6%, so r = 0.06. Interest is compounded twice a year, so k = 2.

We want to find the initial investment, P , needed so that the value of the account will be worth
$40,000 in 18 years. Substitute the given values into the compound interest formula, and solve for P .
Equation:

Lily will need to invest $13,801 to have $40,000 in 18 years.

Note:
Exercise:

A(t) = P(1 + r
n
)

nt
Use the compound interest formula.

40,000 = P(1 + 0.06
2

)
2(18)

Substitute using given values A, r,  n, and t.

40,000 = P(1.03)36 Simplify.
40,000

(1.03)36
= P Isolate P .

P ≈ $13, 801 Divide and round to the nearest dollar.



Problem: 

Refer to [link]. To the nearest dollar, how much would Lily need to invest if the account is
compounded quarterly?

Solution:

$13,693

Evaluating Functions with Base e

As we saw earlier, the amount earned on an account increases as the compounding frequency increases.
[link] shows that the increase from annual to semi-annual compounding is larger than the increase from
monthly to daily compounding. This might lead us to ask whether this pattern will continue.

Examine the value of $1 invested at 100% interest for 1 year, compounded at various frequencies, listed in
[link].

Frequency A(t) = (1 + 1
n
)

n

Value

Annually (1 + 1
1 )

1 $2

Semiannually (1 + 1
2 )

2 $2.25

Quarterly (1 + 1
4 )

4 $2.441406

Monthly (1 + 1
12 )

12 $2.613035

Daily (1 + 1
365 )

365 $2.714567

Hourly (1 + 1
8760 )

8760 $2.718127

Once per minute (1 + 1
525600 )

525600 $2.718279

Once per second (1 + 1
31536000 )

31536000 $2.718282

These values appear to be approaching a limit as n increases without bound. In fact, as n gets larger and
larger, the expression (1 + 1

n
)

n
approaches a number used so frequently in mathematics that it has its own

name: the letter e. This value is an irrational number, which means that its decimal expansion goes on
forever without repeating. Its approximation to six decimal places is shown below.



Note:
The Number e
The letter e represents the irrational number
Equation:

(1 +
1

n
)

n

, asn increases without bound

The letter e is used as a base for many real-world exponential models. To work with base e, we use the
approximation, e ≈ 2.718282.The constant was named by the Swiss mathematician Leonhard Euler
(1707–1783) who first investigated and discovered many of its properties.

Example:
Exercise:

Problem:
Using a Calculator to Find Powers of e

Calculate e3.14. Round to five decimal places.

Solution:

On a calculator, press the button labeled [ex]. The window shows [e ^ ( ]. Type 3.14 and then close
parenthesis, [)]. Press [ENTER]. Rounding to 5 decimal places, e3.14 ≈ 23.10387.Caution: Many
scientific calculators have an “Exp” button, which is used to enter numbers in scientific notation. It is
not used to find powers of e.

Note:
Exercise:

Problem: Use a calculator to find e−0.5. Round to five decimal places.

Solution:

e−0.5 ≈ 0.60653

Investigating Continuous Growth

So far we have worked with rational bases for exponential functions. For most real-world phenomena,
however, e is used as the base for exponential functions. Exponential models that use e as the base are called
continuous growth or decay models. We see these models in finance, computer science, and most of the
sciences, such as physics, toxicology, and fluid dynamics.

Note:
The Continuous Growth/Decay Formula



For all real numbers t,and all positive numbers a and r,continuous growth or decay is represented by the
formula
Equation:

A(t) = aert

where

a is the initial value,
r is the continuous growth rate per unit time,
and t is the elapsed time.

If r > 0 , then the formula represents continuous growth. If r < 0 , then the formula represents continuous
decay.
For business applications, the continuous growth formula is called the continuous compounding formula
and takes the form
Equation:

A(t) = Pert

where

P is the principal or the initial invested,
r is the growth or interest rate per unit time,
and t is the period or term of the investment.

Note:
Given the initial value, rate of growth or decay, and time t, solve a continuous growth or decay
function.

1. Use the information in the problem to determine a, the initial value of the function.
2. Use the information in the problem to determine the growth rate r.

a. If the problem refers to continuous growth, then r > 0.
b. If the problem refers to continuous decay, then r < 0.

3. Use the information in the problem to determine the time t.
4. Substitute the given information into the continuous growth formula and solve for A(t).

Example:
Exercise:

Problem:
Calculating Continuous Growth

A person invested $1,000 in an account earning a nominal 10% per year compounded continuously.
How much was in the account at the end of one year?

Solution:



Since the account is growing in value, this is a continuous compounding problem with growth rate
r = 0.10.The initial investment was $1,000, so P = 1000.We use the continuous compounding
formula to find the value after t = 1 year:
Equation:

The account is worth $1,105.17 after one year.

Note:
Exercise:

Problem: 

A person invests $100,000 at a nominal 12% interest per year compounded continuously. What will be
the value of the investment in 30 years?

Solution:

$3,659,823.44

Example:
Exercise:

Problem:
Calculating Continuous Decay

Radon-222 decays at a continuous rate of 17.3% per day. How much will 100 mg of Radon-222 decay
to in 3 days?

Solution:

Since the substance is decaying, the rate, 17.3%, is negative. So, r  =   − 0.173.The initial amount of
radon-222 was 100mg, so a = 100.We use the continuous decay formula to find the value after t = 3
days:
Equation:

So 59.5115 mg of radon-222 will remain.

A(t) = Pert Use the continuous compounding formula.

= 1000(e)0.1 Substitute known values for P ,  r,  and t.

≈ 1105.17 Use a calculator to approximate.

A(t) = aert Use the continuous growth formula.

= 100e−0.173(3) Substitute known values for a,  r,  and t.

≈ 59.5115 Use a calculator to approximate.



Note:
Exercise:

Problem: Using the data in [link], how much radon-222 will remain after one year?

Solution:

3.77E-26 (This is calculator notation for the number written as 3.77 × 10−26 in scientific notation.
While the output of an exponential function is never zero, this number is so close to zero that for all
practical purposes we can accept zero as the answer.)

Note:
Access these online resources for additional instruction and practice with exponential functions.

Exponential Growth Function
Compound Interest

Key Equations

definition of the
exponential function f(x) = bx,  where  b > 0,  b ≠ 1

definition of exponential
growth f(x) = abx,  where a > 0, b > 0, b ≠ 1

compound interest
formula

continuous growth
formula

A(t) = aert,  where 
tis the number of unit time periods of growth  
ais the starting amount (in the continuous compounding formula a is
replaced with P, the principal)  
eis the mathematical constant,  e ≈ 2.718282

Key Concepts

A(t) = P(1 + r
n
)

nt
 ,  where

A(t) is the account value at time t

t is the number of years

P  is the initial investment, often called the principal

r is the annual percentage rate (APR), or nominal rate

n is the number of compounding periods in one year

http://openstaxcollege.org/l/expgrowth
http://openstaxcollege.org/l/compoundint


An exponential function is defined as a function with a positive constant other than 1 raised to a
variable exponent. See [link].
A function is evaluated by solving at a specific value. See [link] and [link].
An exponential model can be found when the growth rate and initial value are known. See [link].
An exponential model can be found when the two data points from the model are known. See [link].
An exponential model can be found using two data points from the graph of the model. See [link].
An exponential model can be found using two data points from the graph and a calculator. See [link].
The value of an account at any time t can be calculated using the compound interest formula when the
principal, annual interest rate, and compounding periods are known. See [link].
The initial investment of an account can be found using the compound interest formula when the value
of the account, annual interest rate, compounding periods, and life span of the account are known. See
[link].
The number e is a mathematical constant often used as the base of real world exponential growth and
decay models. Its decimal approximation is e ≈ 2.718282.
Scientific and graphing calculators have the key [ex] or [exp(x)] for calculating powers of e. See [link].
Continuous growth or decay models are exponential models that use e as the base. Continuous growth
and decay models can be found when the initial value and growth or decay rate are known. See [link]
and [link].

Section Exercises

Verbal

Exercise:

Problem: 

Explain why the values of an increasing exponential function will eventually overtake the values of an
increasing linear function.

Solution:

Linear functions have a constant rate of change. Exponential functions increase based on a percent of
the original.

Exercise:

Problem: 

Given a formula for an exponential function, is it possible to determine whether the function grows or
decays exponentially just by looking at the formula? Explain.

Exercise:

Problem: 

The Oxford Dictionary defines the word nominal as a value that is “stated or expressed but not
necessarily corresponding exactly to the real value.”[footnote] Develop a reasonable argument for why
the term nominal rate is used to describe the annual percentage rate of an investment account that
compounds interest.
Oxford Dictionary. http://oxforddictionaries.com/us/definition/american_english/nomina.

Solution:

When interest is compounded, the percentage of interest earned to principal ends up being greater than
the annual percentage rate for the investment account. Thus, the annual percentage rate does not



necessarily correspond to the real interest earned, which is the very definition of nominal.

Algebraic

For the following exercises, identify whether the statement represents an exponential function. Explain.
Exercise:

Problem: The average annual population increase of a pack of wolves is 25.

Exercise:

Problem: A population of bacteria decreases by a factor of 1
8 every 24 hours.

Solution:

exponential; the population decreases by a proportional rate. .

Exercise:

Problem: The value of a coin collection has increased by 3.25% annually over the last 20 years.

Exercise:

Problem: 

For each training session, a personal trainer charges his clients $5  less than the previous training
session.

Solution:

not exponential; the charge decreases by a constant amount each visit, so the statement represents a
linear function. .

Exercise:

Problem: The height of a projectile at time t is represented by the function h(t) = −4.9t2 + 18t + 40.

For the following exercises, consider this scenario: For each year t,the population of a forest of trees is
represented by the function A(t) = 115(1.025)t. In a neighboring forest, the population of the same type of
tree is represented by the function B(t) = 82(1.029)t. (Round answers to the nearest whole number.)
Exercise:

Problem: Which forest’s population is growing at a faster rate?

Solution:

The forest represented by the function B(t) = 82(1.029)t.

Exercise:

Problem: Which forest had a greater number of trees initially? By how many?

Exercise:



Problem: 

Assuming the population growth models continue to represent the growth of the forests, which forest
will have a greater number of trees after 20 years? By how many?

Solution:

After t = 20 years, forest A will have 43more trees than forest B.

Exercise:

Problem: 

Assuming the population growth models continue to represent the growth of the forests, which forest
will have a greater number of trees after 100 years? By how many?

Exercise:

Problem: 

Discuss the above results from the previous four exercises. Assuming the population growth models
continue to represent the growth of the forests, which forest will have the greater number of trees in the
long run? Why? What are some factors that might influence the long-term validity of the exponential
growth model?

Solution:

Answers will vary. Sample response: For a number of years, the population of forest A will
increasingly exceed forest B, but because forest B actually grows at a faster rate, the population will
eventually become larger than forest A and will remain that way as long as the population growth
models hold. Some factors that might influence the long-term validity of the exponential growth model
are drought, an epidemic that culls the population, and other environmental and biological factors.

For the following exercises, determine whether the equation represents exponential growth, exponential
decay, or neither. Explain.
Exercise:

Problem: y = 300(1 − t)5

Exercise:

Problem: y = 220(1.06)x

Solution:

exponential growth; The growth factor, 1.06, is greater than 1.

Exercise:

Problem: y = 16.5(1.025)
1
x

Exercise:

Problem: y = 11, 701(0.97)t



Solution:

exponential decay; The decay factor, 0.97, is between 0 and 1.

For the following exercises, find the formula for an exponential function that passes through the two points
given.
Exercise:

Problem: (0, 6) and (3, 750)

Exercise:

Problem: (0, 2000) and (2, 20)

Solution:

f(x) = 2000(0.1)x

Exercise:

Problem: (−1, 3
2 ) and (3, 24)

Exercise:

Problem: (−2, 6) and (3, 1)

Solution:

f(x) = ( 1
6
)
− 3

5 ( 1
6
)

x
5 ≈ 2.93(0.699)x

Exercise:

Problem: (3, 1) and (5, 4)

For the following exercises, determine whether the table could represent a function that is linear,
exponential, or neither. If it appears to be exponential, find a function that passes through the points.
Exercise:

Problem:

x 1 2 3 4

f(x) 70 40 10 -20

Solution:



Linear

Exercise:

Problem:

x 1 2 3 4

h(x) 70 49 34.3 24.01

Exercise:

Problem:

x 1 2 3 4

m(x) 80 61 42.9 25.61

Solution:

Neither

Exercise:

Problem:

x 1 2 3 4

f(x) 10 20 40 80

Exercise:

Problem:



x 1 2 3 4

g(x) -3.25 2 7.25 12.5

Solution:

Linear

For the following exercises, use the compound interest formula, A(t) = P(1 + r
n
)

nt
.

Exercise:

Problem: 

After a certain number of years, the value of an investment account is represented by the equation
10, 250(1 + 0.04

12 )
120

. What is the value of the account?

Exercise:

Problem: What was the initial deposit made to the account in the previous exercise?

Solution:

$10, 250

Exercise:

Problem: How many years had the account from the previous exercise been accumulating interest?

Exercise:

Problem: 

An account is opened with an initial deposit of $6,500 and earns 3.6% interest compounded semi-
annually. What will the account be worth in 20 years?

Solution:

$13, 268.58

Exercise:

Problem: 

How much more would the account in the previous exercise have been worth if the interest were
compounding weekly?

Exercise:

Problem: Solve the compound interest formula for the principal, P .

Solution:

P = A(t) ⋅ (1 + r
n
)
−nt

Exercise:



Problem: 

Use the formula found in the previous exercise to calculate the initial deposit of an account that is
worth $14, 472.74 after earning 5.5% interest compounded monthly for 5 years. (Round to the nearest
dollar.)

Exercise:

Problem: 

How much more would the account in the previous two exercises be worth if it were earning interest
for 5more years?

Solution:

$4,572.56

Exercise:

Problem: 

Use properties of rational exponents to solve the compound interest formula for the interest rate, r.

Exercise:

Problem: 

Use the formula found in the previous exercise to calculate the interest rate for an account that was
compounded semi-annually, had an initial deposit of $9,000 and was worth $13,373.53 after 10 years.

Solution:

4%

Exercise:

Problem: 

Use the formula found in the previous exercise to calculate the interest rate for an account that was
compounded monthly, had an initial deposit of $5,500, and was worth $38,455 after 30 years.

For the following exercises, determine whether the equation represents continuous growth, continuous
decay, or neither. Explain.
Exercise:

Problem: y = 3742(e)0.75t

Solution:

continuous growth; the growth rate is greater than 0.

Exercise:

Problem: y = 150(e)
3.25

t

Exercise:



Problem: y = 2.25(e)−2t

Solution:

continuous decay; the growth rate is less than 0.

Exercise:

Problem: 

Suppose an investment account is opened with an initial deposit of $12, 000 earning 7.2% interest
compounded continuously. How much will the account be worth after 30 years?

Exercise:

Problem: 

How much less would the account from Exercise 42 be worth after 30 years if it were compounded
monthly instead?

Solution:

$669.42

Numeric

For the following exercises, evaluate each function. Round answers to four decimal places, if necessary.
Exercise:

Problem: f(x) = 2(5)x, for f (−3)

Exercise:

Problem: f(x) = −42x+3, for f (−1)

Solution:

f(−1) = −4

Exercise:

Problem: f(x) = ex, for f (3)

Exercise:

Problem: f(x) = −2ex−1, for f (−1)

Solution:

f(−1) ≈ −0.2707

Exercise:



Problem: f(x) = 2.7(4)−x+1 + 1.5, forf (−2)

Exercise:

Problem: f(x) = 1.2e2x − 0.3, for f (3)

Solution:

f(3) ≈ 483.8146

Exercise:

Problem: f(x) = − 3
2 (3)

−x + 3
2 , for f (2)

Technology

For the following exercises, use a graphing calculator to find the equation of an exponential function given
the points on the curve.
Exercise:

Problem: (0, 3) and (3, 375)

Solution:

y = 3 ⋅ 5x

Exercise:

Problem: (3, 222.62) and (10, 77.456)

Exercise:

Problem: (20, 29.495) and (150, 730.89)

Solution:

y ≈ 18 ⋅ 1.025x

Exercise:

Problem: (5, 2.909) and (13, 0.005)

Exercise:

Problem: (11,310.035)  and (25,356.3652)

Solution:

y ≈ 0.2 ⋅ 1.95x



Extensions

Exercise:

Problem: 

The annual percentage yield (APY) of an investment account is a representation of the actual interest
rate earned on a compounding account. It is based on a compounding period of one year. Show that the
APY of an account that compounds monthly can be found with the formulaAPY = (1 + r

12 )
12
− 1.

Exercise:

Problem: 

Repeat the previous exercise to find the formula for the APY of an account that compounds daily. Use
the results from this and the previous exercise to develop a function I(n) for the APY of any account
that compounds n times per year.

Solution:

APY =
A(t)−a

a
=

a(1+ r
365 )

365(1)
−a

a
=

a[(1+ r
365 )365−1]

a
= (1 + r

365 )
365

− 1;I(n) = (1 + r
n
)

n
− 1

Exercise:

Problem: 

Recall that an exponential function is any equation written in the form f(x) = a ⋅ bx such that a and b 
are positive numbers and b ≠ 1. Any positive number b can be written as b = en for some value of n.
Use this fact to rewrite the formula for an exponential function that uses the number e as a base.

Exercise:

Problem: 

In an exponential decay function, the base of the exponent is a value between 0 and 1. Thus, for some
number b > 1, the exponential decay function can be written as f(x) = a ⋅ ( 1

b
)

x
. Use this formula,

along with the fact that b = en, to show that an exponential decay function takes the form
f(x) = a(e)−nx for some positive number n .

Solution:

Let f be the exponential decay function f(x) = a ⋅ ( 1
b
)

x such that b > 1.Then for some number

n > 0,f(x) = a ⋅ ( 1
b
)

x
= a(b−1)

x
= a((en)−1)

x

= a(e−n)
x
= a(e)−nx.

Exercise:

Problem: 

The formula for the amount A in an investment account with a nominal interest rate r at any time t is
given by A(t) = a(e)rt,where a is the amount of principal initially deposited into an account that
compounds continuously. Prove that the percentage of interest earned to principal at any time t can be
calculated with the formula I(t) = ert − 1.

Real-World Applications



Exercise:

Problem: 

The fox population in a certain region has an annual growth rate of 9% per year. In the year 2012, there
were 23,900 fox counted in the area. What is the fox population predicted to be in the year 2020?

Solution:

47, 622 fox

Exercise:

Problem: 

A scientist begins with 100 milligrams of a radioactive substance that decays exponentially. After 35
hours, 50mg of the substance remains. How many milligrams will remain after 54 hours?

Exercise:

Problem: 

In the year 1985, a house was valued at $110,000. By the year 2005, the value had appreciated to
$145,000. What was the annual growth rate between 1985 and 2005? Assume that the value continued
to grow by the same percentage. What was the value of the house in the year 2010?

Solution:

1.39%; $155, 368.09

Exercise:

Problem: 

A car was valued at $38,000 in the year 2007. By 2013, the value had depreciated to $11,000 If the
car’s value continues to drop by the same percentage, what will it be worth by 2017?

Exercise:

Problem: 

Jamal wants to save $54,000 for a down payment on a home. How much will he need to invest in an
account with 8.2% APR, compounding daily, in order to reach his goal in 5 years?

Solution:

$35, 838.76

Exercise:

Problem: 

Kyoko has $10,000 that she wants to invest. Her bank has several investment accounts to choose from,
all compounding daily. Her goal is to have $15,000 by the time she finishes graduate school in 6 years.
To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to
reach her goal? (Hint: solve the compound interest formula for the interest rate.)

Exercise:



Problem: 

Alyssa opened a retirement account with 7.25% APR in the year 2000. Her initial deposit was $13,500.
How much will the account be worth in 2025 if interest compounds monthly? How much more would
she make if interest compounded continuously?

Solution:

$82, 247.78; $449.75

Exercise:

Problem: 

An investment account with an annual interest rate of 7% was opened with an initial deposit of $4,000
Compare the values of the account after 9 years when the interest is compounded annually, quarterly,
monthly, and continuously.

Glossary

annual percentage rate (APR)
the yearly interest rate earned by an investment account, also called nominal rate

compound interest
interest earned on the total balance, not just the principal

exponential growth
a model that grows by a rate proportional to the amount present

nominal rate
the yearly interest rate earned by an investment account, also called annual percentage rate



Graphs of Exponential Functions

Graph exponential functions.
Graph exponential functions using transformations.

As we discussed in the previous section, exponential functions are used for many real-world
applications such as finance, forensics, computer science, and most of the life sciences. Working with an
equation that describes a real-world situation gives us a method for making predictions. Most of the
time, however, the equation itself is not enough. We learn a lot about things by seeing their pictorial
representations, and that is exactly why graphing exponential equations is a powerful tool. It gives us
another layer of insight for predicting future events.

Graphing Exponential Functions

Before we begin graphing, it is helpful to review the behavior of exponential growth. Recall the table of
values for a function of the form f(x) = bx whose base is greater than one. We’ll use the function
f(x) = 2x. Observe how the output values in [link] change as the input increases by 1.

x −3 −2 −1 0 1 2 3

f(x) = 2x 1
8

1
4

1
2 1 2 4 8

Each output value is the product of the previous output and the base, 2.We call the base 2 the constant
ratio. In fact, for any exponential function with the form f(x) = abx, b is the constant ratio of the
function. This means that as the input increases by 1, the output value will be the product of the base
and the previous output, regardless of the value of a.

Notice from the table that

the output values are positive for all values of x;
asx increases, the output values increase without bound; and
asx decreases, the output values grow smaller, approaching zero.

[link] shows the exponential growth function f(x) = 2x.



The domain of f(x) = 2x is all real numbers, the range is (0,∞), and the horizontal asymptote is
y = 0.

To get a sense of the behavior of exponential decay, we can create a table of values for a function of the
form f(x) = bx whose base is between zero and one. We’ll use the function g(x) = ( 1

2 )
x
. Observe

how the output values in [link] change as the input increases by 1.

x −3 −2 −1 0 1 2 3

g(x) = ( 1
2
)x 8 4 2 1 1

2
1
4

1
8

Again, because the input is increasing by 1, each output value is the product of the previous output and
the base, or constant ratio 1

2
.

Notice from the table that

Notice that the graph gets close to the x-axis, but never
touches it.



the output values are positive for all values ofx;
asx increases, the output values grow smaller, approaching zero; and
asx decreases, the output values grow without bound.

[link] shows the exponential decay function, g(x) = ( 1
2 )

x
.

The domain of g(x) = ( 1
2 )

x is all real numbers, the range is (0,∞),and the horizontal asymptote is
y = 0.

Note:
Characteristics of the Graph of the Parent Function f(x) = b
An exponential function with the form f(x) = bx, b > 0, b ≠ 1,has these characteristics:

one-to-one function
horizontal asymptote: y = 0
domain: (–∞,  ∞)
range: (0,∞)
x-intercept: none
y-intercept: (0, 1)
increasing if b > 1
decreasing if b < 1

[link] compares the graphs of exponential growth and decay functions.

x



Note:
Given an exponential function of the form f(x) = bx,graph the function.

1. Create a table of points.
2. Plot at least 3 point from the table, including the y-intercept (0, 1).
3. Draw a smooth curve through the points.
4. State the domain, (−∞,∞),the range, (0,∞),and the horizontal asymptote, y = 0.

Example:
Exercise:

Problem:
Sketching the Graph of an Exponential Function of the Form f(x) = b

Sketch a graph of f(x) = 0.25x. State the domain, range, and asymptote.

Solution:

Before graphing, identify the behavior and create a table of points for the graph.

Since b = 0.25 is between zero and one, we know the function is decreasing. The left tail of
the graph will increase without bound, and the right tail will approach the asymptote y = 0.
Create a table of points as in [link].

x



x −3 −2 −1 0 1 2 3

f(x) = 0.25x 64 16 4 1 0.25 0.0625 0.015625

Plot the y-intercept, (0, 1),along with two other points. We can use (−1, 4) and (1, 0.25).

Draw a smooth curve connecting the points as in [link].

The domain is (−∞,∞); the range is (0,∞); the horizontal asymptote is y = 0.

Note:
Exercise:

Problem: Sketch the graph of f(x) = 4x. State the domain, range, and asymptote.

Solution:

The domain is (−∞,∞); the range is (0,∞); the horizontal asymptote is y = 0.



Graphing Transformations of Exponential Functions

Transformations of exponential graphs behave similarly to those of other functions. Just as with other
parent functions, we can apply the four types of transformations—shifts, reflections, stretches, and
compressions—to the parent function f(x) = bx without loss of shape. For instance, just as the
quadratic function maintains its parabolic shape when shifted, reflected, stretched, or compressed, the
exponential function also maintains its general shape regardless of the transformations applied.

Graphing a Vertical Shift

The first transformation occurs when we add a constant d to the parent function f(x) = bx, giving us a
vertical shift d units in the same direction as the sign. For example, if we begin by graphing a parent
function, f(x) = 2x, we can then graph two vertical shifts alongside it, using d = 3 : the upward shift,
g(x) = 2x + 3 and the downward shift,h(x) = 2x − 3.Both vertical shifts are shown in [link].



Observe the results of shifting f(x) = 2x vertically:

The domain, (−∞,∞) remains unchanged.
When the function is shifted up 3 units to g(x) = 2x + 3 :

The y-intercept shifts up 3 units to (0, 4).
The asymptote shifts up 3 units to y = 3.
The range becomes (3,∞).

When the function is shifted down 3 units toh(x) = 2x − 3 :

The y-intercept shifts down 3 units to (0,−2).
The asymptote also shifts down 3 units to y = −3.
The range becomes (−3,∞).

Graphing a Horizontal Shift

The next transformation occurs when we add a constant c to the input of the parent function f(x) = bx,
giving us a horizontal shift c units in the opposite direction of the sign. For example, if we begin by
graphing the parent function f(x) = 2x, we can then graph two horizontal shifts alongside it, using



c = 3 : the shift left, g(x) = 2x+3, and the shift right,h(x) = 2x−3. Both horizontal shifts are shown
in [link].

Observe the results of shifting f(x) = 2x horizontally:

The domain, (−∞,∞),remains unchanged.
The asymptote, y = 0,remains unchanged.
The y-intercept shifts such that:

When the function is shifted left 3 units to g(x) = 2x+3,the y-intercept becomes (0, 8). This
is because 2x+3 = (8)2x,so the initial value of the function is 8.
When the function is shifted right 3 units toh(x) = 2x−3,the y-intercept becomes (0, 1

8 ).
Again, see that 2x−3 = ( 1

8 )2x,so the initial value of the function is 1
8 .

Note:
Shifts of the Parent Function f(x) = b
For any constants c and d,the function f(x) = bx+c + d shifts the parent function f(x) = bx

vertically d units, in the same direction of the sign of d.
horizontally c units, in the opposite direction of the sign of c.
The y-intercept becomes (0, bc + d).
The horizontal asymptote becomes y = d.
The range becomes (d,∞).
The domain, (−∞,∞),remains unchanged.

x



Note:
Given an exponential function with the form f(x) = bx+c + d,graph the translation.

1. Draw the horizontal asymptote y = d.
2. Identify the shift as (−c, d). Shift the graph of f(x) = bx left c units if c is positive, and right c

units ifc is negative.
3. Shift the graph of f(x) = bx up d units if d is positive, and down d units if d is negative.
4. State the domain, (−∞,∞),the range, (d,∞),and the horizontal asymptote y = d.

Example:
Exercise:

Problem:
Graphing a Shift of an Exponential Function

Graph f(x) = 2x+1 − 3. State the domain, range, and asymptote.

Solution:

We have an exponential equation of the form f(x) = bx+c + d, with b = 2, c = 1, and d = −3.

Draw the horizontal asymptote y = d, so draw y = −3.

Identify the shift as (−c, d), so the shift is (−1,−3).

Shift the graph of f(x) = bx left 1 units and down 3 units.



The domain is (−∞,∞); the range is (−3,∞); the horizontal asymptote is y = −3.

Note:
Exercise:

Problem: Graph f(x) = 2x−1 + 3. State domain, range, and asymptote.

Solution:

The domain is (−∞,∞); the range is (3,∞); the horizontal asymptote is y = 3.

Note:
Given an equation of the form f(x) = bx+c + d forx, use a graphing calculator to approximate
the solution.

Press [Y=]. Enter the given exponential equation in the line headed “Y =”.
Enter the given value for f(x) in the line headed “Y =”.
Press [WINDOW]. Adjust the y-axis so that it includes the value entered for “Y =”.
Press [GRAPH] to observe the graph of the exponential function along with the line for the
specified value of f(x).
To find the value ofx,we compute the point of intersection. Press [2ND] then [CALC]. Select
“intersect” and press [ENTER] three times. The point of intersection gives the value of x for the
indicated value of the function.
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Example:
Exercise:

Problem:
Approximating the Solution of an Exponential Equation

Solve 42 = 1.2(5)x + 2.8 graphically. Round to the nearest thousandth.

Solution:

Press [Y=] and enter 1.2(5)x + 2.8 next to Y =. Then enter 42 next to Y2=. For a window, use the
values –3 to 3 forx and –5 to 55 for y. Press [GRAPH]. The graphs should intersect somewhere
nearx = 2.

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER]
three times. The x-coordinate of the point of intersection is displayed as 2.1661943. (Your answer
may be different if you use a different window or use a different value for Guess?) To the nearest
thousandth,x ≈ 2.166.

Note:
Exercise:

Problem: Solve 4 = 7.85(1.15)x − 2.27 graphically. Round to the nearest thousandth.

Solution:

x ≈ −1.608

Graphing a Stretch or Compression

While horizontal and vertical shifts involve adding constants to the input or to the function itself, a
stretch or compression occurs when we multiply the parent function f(x) = bx by a constant |a| > 0.
For example, if we begin by graphing the parent function f(x) = 2x,we can then graph the stretch,
using a = 3,to get g(x) = 3(2)x as shown on the left in [link], and the compression, using a = 1

3 ,to get
h(x) = 1

3 (2)
x as shown on the right in [link].
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Note:
Stretches and Compressions of the Parent Function f(x) = b
For any factor a > 0,the function f(x) = a(b)x

is stretched vertically by a factor of a if |a| > 1.
is compressed vertically by a factor of a if |a| < 1.
has a y-intercept of (0, a).
has a horizontal asymptote at y = 0, a range of (0,∞), and a domain of (−∞,∞),which are
unchanged from the parent function.

Example:
Exercise:

Problem: Graphing the Stretch of an Exponential Function

Sketch a graph of f(x) = 4( 1
2 )

x
. State the domain, range, and asymptote.

Solution:

Before graphing, identify the behavior and key points on the graph.

(a) g(x) = 3(2)x stretches the graph of f(x) = 2x vertically by a factor of 3. (b)h(x) = 1
3 (2)

x

compresses the graph of f(x) = 2x vertically by a factor of 1
3
.

x



Since b = 1
2 is between zero and one, the left tail of the graph will increase without bound as

x decreases, and the right tail will approach the x-axis asx increases.
Since a = 4,the graph of f(x) = ( 1

2 )
x

will be stretched by a factor of 4.
Create a table of points as shown in [link].

x −3 −2 −1 0 1 2 3

f(x) = 4(
1

2
)x 32 16 8 4 2 1 0.5

Plot the y-intercept, (0, 4),along with two other points. We can use (−1, 8) and (1, 2).

Draw a smooth curve connecting the points, as shown in [link].

The domain is (−∞,∞); the range is (0,∞); the horizontal asymptote is y = 0.

Note:
Exercise:



Problem: Sketch the graph of f(x) = 1
2 (4)

x. State the domain, range, and asymptote.

Solution:

The domain is (−∞,∞); the range is (0,∞); the horizontal asymptote is y = 0.   

Graphing Reflections

In addition to shifting, compressing, and stretching a graph, we can also reflect it about the x-axis or the
y-axis. When we multiply the parent function f(x) = bx by−1,we get a reflection about the x-axis.
When we multiply the input by−1,we get a reflection about the y-axis. For example, if we begin by
graphing the parent function f(x) = 2x, we can then graph the two reflections alongside it. The
reflection about the x-axis, g(x) = −2x,is shown on the left side of [link], and the reflection about the
y-axish(x) = 2−x, is shown on the right side of [link].



Note:
Reflections of the Parent Function f(x) = b
The function f(x) = −bx

reflects the parent function f(x) = bx about the x-axis.
has a y-intercept of (0,−1).
has a range of (−∞, 0).
has a horizontal asymptote at y = 0 and domain of (−∞,∞),which are unchanged from the
parent function.

The function f(x) = b−x

reflects the parent function f(x) = bx about the y-axis.
has a y-intercept of (0, 1), a horizontal asymptote at y = 0, a range of (0,∞), and a domain of
(−∞,∞), which are unchanged from the parent function.

(a) g(x) = −2x reflects the graph of f(x) = 2x about the x-axis. (b) g(x) = 2−x reflects the graph
of f(x) = 2x about the y-axis.

x



Example:
Exercise:

Problem:
Writing and Graphing the Reflection of an Exponential Function

Find and graph the equation for a function, g(x),that reflects f(x) = ( 1
4 )

x
about the x-axis. State

its domain, range, and asymptote.

Solution:

Since we want to reflect the parent function f(x) = ( 1
4 )

x about the x-axis, we multiply f(x) by
− 1 to get, g(x) = −( 1

4 )
x
. Next we create a table of points as in [link].

x −3 −2 −1 0 1 2 3

g(x) = −(
1

4
)x −64 −16 −4 −1 −0.25 −0.0625 −0.0156

Plot the y-intercept, (0,−1),along with two other points. We can use (−1,−4) and (1,−0.25).

Draw a smooth curve connecting the points:

The domain is (−∞,∞); the range is (−∞, 0); the horizontal asymptote is y = 0.



Note:
Exercise:

Problem: 

Find and graph the equation for a function, g(x), that reflects f(x) = 1.25x about the y-axis. State
its domain, range, and asymptote.

Solution:

The domain is (−∞,∞); the range is (0,∞); the horizontal asymptote is y = 0.

Summarizing Translations of the Exponential Function

Now that we have worked with each type of translation for the exponential function, we can summarize
them in [link] to arrive at the general equation for translating exponential functions.

Translations of the Parent Function f(x) = bx

Translation Form



Translations of the Parent Function f(x) = bx

Translation Form

Shift

Horizontally c units to the left

Vertically d units up

f(x) = bx+c + d

Stretch and Compress

Stretch if |a| > 1
Compression if 0 < |a| < 1

f(x) = abx

Reflect about the x-axis f(x) = −bx

Reflect about the y-axis f(x) = b−x = (
1

b
)

x

General equation for all translations f(x) = abx+c + d

Note:
Translations of Exponential Functions
A translation of an exponential function has the form
Equation:

 f(x) = abx+c + d

Where the parent function, y = bx, b > 1,is

shifted horizontally c units to the left.
stretched vertically by a factor of |a| if |a| > 0.
compressed vertically by a factor of |a| if 0 < |a| < 1.
shifted vertically d units.



reflected about the x-axis when a < 0.

Note the order of the shifts, transformations, and reflections follow the order of operations.

Example:
Exercise:

Problem: Writing a Function from a Description

Write the equation for the function described below. Give the horizontal asymptote, the domain,
and the range.

f(x) = ex is vertically stretched by a factor of 2 , reflected across the y-axis, and then shifted
up 4 units.

Solution:

We want to find an equation of the general form  f(x) = abx+c + d. We use the description
provided to find a, b, c, and d.

We are given the parent function f(x) = ex, so b = e.
The function is stretched by a factor of 2, so a = 2.
The function is reflected about the y-axis. We replacexwith − x to get: e−x.
The graph is shifted vertically 4 units, so d = 4.

Substituting in the general form we get,
Equation:

The domain is (−∞,∞); the range is (4,∞); the horizontal asymptote is y = 4.

Note:
Exercise:

Problem: 

Write the equation for function described below. Give the horizontal asymptote, the domain, and
the range.

f(x) = ex is compressed vertically by a factor of 1
3 , reflected across the x-axis and then

shifted down 2 units.

 f(x) = abx+c + d

= 2e−x+0 + 4

= 2e−x + 4



Solution:

f(x) = − 1
3 e

x − 2; the domain is (−∞,∞); the range is (−∞, 2); the horizontal asymptote is
y = 2.

Note:
Access this online resource for additional instruction and practice with graphing exponential functions.

Graph Exponential Functions

Key Equations

General Form for the Translation of the Parent Function f(x) = bx f(x) = abx+c + d

Key Concepts

The graph of the function f(x) = bx has a y-intercept at (0,  1),domain (−∞,  ∞),range (0,  ∞),
and horizontal asymptote y = 0. See [link].
If b > 1,the function is increasing. The left tail of the graph will approach the asymptote y = 0,
and the right tail will increase without bound.
If 0 < b < 1, the function is decreasing. The left tail of the graph will increase without bound, and
the right tail will approach the asymptote y = 0.
The equation f(x) = bx + d represents a vertical shift of the parent function f(x) = bx.
The equation f(x) = bx+c represents a horizontal shift of the parent function f(x) = bx. See
[link].
Approximate solutions of the equation f(x) = bx+c + d can be found using a graphing calculator.
See [link].
The equation f(x) = abx, where a > 0, represents a vertical stretch if |a| > 1 or compression if
0 < |a| < 1 of the parent function f(x) = bx. See [link].
When the parent function f(x) = bx is multiplied by − 1,the result, f(x) = −bx, is a reflection
about the x-axis. When the input is multiplied by − 1,the result, f(x) = b−x, is a reflection about
the y-axis. See [link].
All translations of the exponential function can be summarized by the general equation
f(x) = abx+c + d. See [link].
Using the general equation f(x) = abx+c + d, we can write the equation of a function given its
description. See [link].

Section Exercises

http://openstaxcollege.org/l/graphexpfunc


Verbal

Exercise:

Problem: 

What role does the horizontal asymptote of an exponential function play in telling us about the end
behavior of the graph?

Solution:

An asymptote is a line that the graph of a function approaches, asx either increases or decreases
without bound. The horizontal asymptote of an exponential function tells us the limit of the
function’s values as the independent variable gets either extremely large or extremely small.

Exercise:

Problem: 

What is the advantage of knowing how to recognize transformations of the graph of a parent
function algebraically?

Algebraic

Exercise:

Problem: 

The graph of f(x) = 3x is reflected about the y-axis and stretched vertically by a factor of 4.What
is the equation of the new function, g(x)? State its y-intercept, domain, and range.

Solution:

g(x) = 4(3)−x; y-intercept: (0, 4); Domain: all real numbers; Range: all real numbers greater than
0.

Exercise:

Problem: 

The graph of f(x) = ( 1
2 )

−x is reflected about the y-axis and compressed vertically by a factor of
1
5
. What is the equation of the new function, g(x)? State its y-intercept, domain, and range.

Exercise:

Problem: 

The graph of f(x) = 10x is reflected about the x-axis and shifted upward 7 units. What is the
equation of the new function, g(x)? State its y-intercept, domain, and range.

Solution:

g(x) = −10x + 7; y-intercept: (0, 6); Domain: all real numbers; Range: all real numbers less
than 7.



Exercise:

Problem: 

The graph of f(x) = (1.68)x is shifted right 3 units, stretched vertically by a factor of 2,reflected
about the x-axis, and then shifted downward 3 units. What is the equation of the new function,
g(x)? State its y-intercept (to the nearest thousandth), domain, and range.

Exercise:

Problem: 

The graph of f(x) = 2( 1
4 )

x−20 is shifted left 2 units, stretched vertically by a factor of 4,reflected
about the x-axis, and then shifted downward 4 units. What is the equation of the new function,
g(x)? State its y-intercept, domain, and range.

Solution:

g(x) = 2( 1
4
)
x
;  y-intercept: (0,  2); Domain: all real numbers; Range: all real numbers greater

than 0.

Graphical

For the following exercises, graph the function and its reflection about the y-axis on the same axes, and
give the y-intercept.
Exercise:

Problem: f(x) = 3( 1
2
)
x

Exercise:

Problem: g(x) = −2(0.25)x

Solution:

y-intercept: (0,−2)



Exercise:

Problem: h(x) = 6(1.75)−x

For the following exercises, graph each set of functions on the same axes.
Exercise:

Problem: f(x) = 3( 1
4
)
x
,g(x) = 3(2)x,andh(x) = 3(4)x

Solution:

Exercise:

Problem: f(x) = 1
4 (3)

x,g(x) = 2(3)x,andh(x) = 4(3)x

For the following exercises, match each function with one of the graphs in [link].



Exercise:

Problem: f (x) = 2(0.69)x

Solution:

B

Exercise:

Problem: f (x) = 2(1.28)x

Exercise:

Problem: f (x) = 2(0.81)x

Solution:

A

Exercise:

Problem: f (x) = 4(1.28)x

Exercise:

Problem: f (x) = 2(1.59)x

Solution:



E

Exercise:

Problem: f (x) = 4(0.69)x

For the following exercises, use the graphs shown in [link]. All have the form f (x) = abx.

Exercise:

Problem: Which graph has the largest value for b?

Solution:

D

Exercise:

Problem: Which graph has the smallest value for b?

Exercise:

Problem: Which graph has the largest value for a?

Solution:

C

Exercise:



Problem: Which graph has the smallest value for a?

For the following exercises, graph the function and its reflection about the x-axis on the same axes.
Exercise:

Problem: f(x) = 1
2 (4)

x

Solution:

Exercise:

Problem: f(x) = 3(0.75)x − 1

Exercise:

Problem: f(x) = −4(2)x + 2

Solution:



For the following exercises, graph the transformation of f(x) = 2x. Give the horizontal asymptote, the
domain, and the range.
Exercise:

Problem: f (x) = 2−x

Exercise:

Problem: h (x) = 2x + 3

Solution:

Horizontal asymptote:h(x) = 3;  Domain: all real numbers; Range: all real numbers strictly
greater than 3.

Exercise:



Problem: f (x) = 2x−2

For the following exercises, describe the end behavior of the graphs of the functions.
Exercise:

Problem: f (x) = −5(4)x − 1

Solution:

As x → ∞, f (x) → −∞; 
As x → −∞, f (x) → −1

Exercise:

Problem: f (x) = 3( 1
2 )

x
− 2

Exercise:

Problem: f (x) = 3(4)−x + 2

Solution:

As x → ∞, f (x) → 2; 
As x → −∞, f (x) → ∞

For the following exercises, start with the graph of f (x) = 4x. Then write a function that results from
the given transformation.
Exercise:

Problem: Shift f(x) 4 units upward

Exercise:

Problem: Shift f(x) 3 units downward

Solution:

f (x) = 4x − 3

Exercise:

Problem: Shift f(x) 2 units left

Exercise:

Problem: Shift f(x) 5 units right

Solution:



f(x) = 4x−5

Exercise:

Problem: Reflect f(x) about the x-axis

Exercise:

Problem: Reflect f(x) about the y-axis

Solution:

f (x) = 4−x

For the following exercises, each graph is a transformation of y = 2x. Write an equation describing the
transformation.
Exercise:

Problem:  

Exercise:

Problem:  



Solution:

y = −2x + 3

Exercise:

Problem:  

For the following exercises, find an exponential equation for the graph.
Exercise:

Problem:  



Solution:

y = −2(3)x + 7

Exercise:

Problem:  

Numeric

For the following exercises, evaluate the exponential functions for the indicated value ofx.
Exercise:



Problem: g(x) = 1
3 (7)

x−2 for g(6).

Solution:

g(6) = 800 + 1
3 ≈ 800.3333

Exercise:

Problem: f(x) = 4(2)x−1 − 2 for f(5).

Exercise:

Problem: h(x) = − 1
2 ( 1

2 )
x
+ 6 forh(−7).

Solution:

h(−7) = −58

Technology

For the following exercises, use a graphing calculator to approximate the solutions of the equation.
Round to the nearest thousandth.
Exercise:

Problem: −50 = −( 1
2
)
−x

Exercise:

Problem: 116 = 1
4
( 1

8
)
x

Solution:

x ≈ −2.953

Exercise:

Problem: 12 = 2(3)x + 1

Exercise:

Problem: 5 = 3( 1
2
)
x−1

− 2

Solution:

x ≈ −0.222

Exercise:



Problem: −30 = −4(2)x+2 + 2

Extensions

Exercise:

Problem: 

Explore and discuss the graphs ofF(x) = (b)x andG(x) = ( 1
b
)
x
. Then make a conjecture about

the relationship between the graphs of the functions bx and ( 1
b
)
x for any real number b > 0.

Solution:

The graph ofG(x) = ( 1
b
)
x

is the refelction about the y-axis of the graph ofF(x) = bx; For any
real number b > 0 and function f(x) = bx,the graph of ( 1

b
)
x is the the reflection about the y-axis,

F(−x).

Exercise:

Problem: Prove the conjecture made in the previous exercise.

Exercise:

Problem: 

Explore and discuss the graphs of f(x) = 4x, g(x) = 4x−2,andh(x) = ( 1
16

)4x. Then make a
conjecture about the relationship between the graphs of the functions bx and ( 1

bn
)bx for any real

number n and real number b > 0.

Solution:

The graphs of g(x) andh(x) are the same and are a horizontal shift to the right of the graph of
f(x); For any real number n, real number b > 0, and function f(x) = bx, the graph of ( 1

bn
)bx is

the horizontal shift f(x− n).

Exercise:

Problem: Prove the conjecture made in the previous exercise.



Logarithmic Functions
In this section, you will:

Convert from logarithmic to exponential form.
Convert from exponential to logarithmic form.
Evaluate logarithms.
Use common logarithms.
Use natural logarithms.

In 2010, a major earthquake struck Haiti, destroying or damaging over
285,000 homes[footnote]. One year later, another, stronger earthquake
devastated Honshu, Japan, destroying or damaging over 332,000 buildings,
[footnote] like those shown in [link]. Even though both caused substantial
damage, the earthquake in 2011 was 100 times stronger than the earthquake
in Haiti. How do we know? The magnitudes of earthquakes are measured
on a scale known as the Richter Scale. The Haitian earthquake registered a

Devastation of March 11, 2011 earthquake in Honshu,
Japan. (credit: Daniel Pierce)



7.0 on the Richter Scale[footnote] whereas the Japanese earthquake
registered a 9.0.[footnote]
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#sum
mary. Accessed 3/4/2013.
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#su
mmary. Accessed 3/4/2013.
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/.
Accessed 3/4/2013.
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#det
ails. Accessed 3/4/2013.

The Richter Scale is a base-ten logarithmic scale. In other words, an
earthquake of magnitude 8 is not twice as great as an earthquake of
magnitude 4. It is 108−4 = 104 = 10,000 times as great! In this lesson, we
will investigate the nature of the Richter Scale and the base-ten function
upon which it depends.

Converting from Logarithmic to Exponential Form

In order to analyze the magnitude of earthquakes or compare the
magnitudes of two different earthquakes, we need to be able to convert
between logarithmic and exponential form. For example, suppose the
amount of energy released from one earthquake were 500 times greater than
the amount of energy released from another. We want to calculate the
difference in magnitude. The equation that represents this problem is
10x = 500, wherex represents the difference in magnitudes on the Richter
Scale. How would we solve forx?

We have not yet learned a method for solving exponential equations. None
of the algebraic tools discussed so far is sufficient to solve 10x = 500.We
know that 102 = 100 and 103 = 1000, so it is clear thatxmust be some
value between 2 and 3, since y = 10x is increasing. We can examine a
graph, as in [link], to better estimate the solution.



Estimating from a graph, however, is imprecise. To find an algebraic
solution, we must introduce a new function. Observe that the graph in [link]
passes the horizontal line test. The exponential function y = bx is one-to-
one, so its inverse,x = by is also a function. As is the case with all inverse
functions, we simply interchangex and y and solve for y to find the inverse
function. To represent y as a function ofx, we use a logarithmic function of
the form y = logb (x). The base b logarithm of a number is the exponent
by which we must raise b to get that number.

We read a logarithmic expression as, “The logarithm with base b ofx is
equal to y,” or, simplified, “log base b ofx is y.” We can also say, “b raised
to the power of y isx,” because logs are exponents. For example, the base 2
logarithm of 32 is 5, because 5 is the exponent we must apply to 2 to get 32.
Since 25 = 32, we can write log232 = 5.We read this as “log base 2 of 32
is 5.”



We can express the relationship between logarithmic form and its
corresponding exponential form as follows:
Equation:

logb (x) = y ⇔ by = x, b > 0, b ≠ 1

Note that the base b is always positive.

Because logarithm is a function, it is most correctly written as logb(x),
using parentheses to denote function evaluation, just as we would with
f(x). However, when the input is a single variable or number, it is
common to see the parentheses dropped and the expression written without
parentheses, as logbx. Note that many calculators require parentheses
around thex.

We can illustrate the notation of logarithms as follows:

Notice that, comparing the logarithm function and the exponential function,
the input and the output are switched. This means y = logb (x) and y = bx

are inverse functions.

Note:
Definition of the Logarithmic Function
A logarithm base b of a positive numberx satisfies the following
definition.



Forx > 0, b > 0, b ≠ 1,
Equation:

y = logb (x) is equivalent to b
y = x

where,

we read logb (x) as, “the logarithm with base b ofx” or the “log base b
ofx.′′
the logarithm y is the exponent to which bmust be raised to getx.

Also, since the logarithmic and exponential functions switch thex and y
values, the domain and range of the exponential function are interchanged
for the logarithmic function. Therefore,

the domain of the logarithm function with base b is (0,∞).
the range of the logarithm function with base b is (−∞,∞).

Note:
Can we take the logarithm of a negative number?
No. Because the base of an exponential function is always positive, no
power of that base can ever be negative. We can never take the logarithm
of a negative number. Also, we cannot take the logarithm of zero.
Calculators may output a log of a negative number when in complex mode,
but the log of a negative number is not a real number.

Note:
Given an equation in logarithmic form logb (x) = y, convert it to
exponential form.

1. Examine the equation y = logbx and identify b, y, andx.
2. Rewrite logbx = y as by = x.



Example:
Exercise:

Problem:
Converting from Logarithmic Form to Exponential Form

Write the following logarithmic equations in exponential form.

a. log6 (√6) = 1
2

b. log3 (9) = 2

Solution:

First, identify the values of b, y, andx. Then, write the equation in the
form by = x.

a. log6 (√6) = 1
2

Here, b = 6, y = 1
2
, and x = √6.Therefore, the equation

log6 (√6) = 1
2 is equivalent to

6
1
2 = √6.

b. log3 (9) = 2

Here, b = 3, y = 2, and x = 9.Therefore, the equation
log3 (9) = 2 is equivalent to 32 = 9.

Note:
Exercise:



Problem: 

Write the following logarithmic equations in exponential form.

a. log10 (1,000,000) = 6
b. log5 (25) = 2

Solution:

a. log10 (1, 000, 000) = 6 is equivalent to 106 = 1, 000, 000
b. log5 (25) = 2 is equivalent to 52 = 25

Converting from Exponential to Logarithmic Form

To convert from exponents to logarithms, we follow the same steps in
reverse. We identify the base b,exponentx,and output y. Then we write
x = logb (y).

Example:
Exercise:

Problem:
Converting from Exponential Form to Logarithmic Form

Write the following exponential equations in logarithmic form.

a. 23 = 8
b. 52 = 25
c. 10−4 = 1

10,000

Solution:



First, identify the values of b, y, andx. Then, write the equation in the
formx = logb (y).

a. 23 = 8

Here, b = 2,x = 3,and y = 8.Therefore, the equation 23 = 8 is
equivalent to log2(8) = 3.

b. 52 = 25

Here, b = 5,x = 2,and y = 25.Therefore, the equation 52 = 25
is equivalent to log5(25) = 2.

c. 10−4 = 1
10,000

Here, b = 10,x = −4,and y = 1
10,000 . Therefore, the equation

10−4 = 1
10,000 is equivalent to log10(

1
10,000 ) = −4.

Note:
Exercise:

Problem: 

Write the following exponential equations in logarithmic form.

a. 32 = 9
b. 53 = 125
c. 2−1 = 1

2

Solution:

a. 32 = 9 is equivalent to log3(9) = 2
b. 53 = 125 is equivalent to log5(125) = 3
c. 2−1 = 1

2 is equivalent to log2(
1
2 ) = −1



Evaluating Logarithms

Knowing the squares, cubes, and roots of numbers allows us to evaluate
many logarithms mentally. For example, consider log28.We ask, “To what
exponent must 2  be raised in order to get 8?” Because we already know
23 = 8, it follows that log28 = 3.

Now consider solving log749 and log327mentally.

We ask, “To what exponent must 7 be raised in order to get 49?” We
know 72 = 49.Therefore, log7 49 = 2
We ask, “To what exponent must 3 be raised in order to get 27?” We
know 33 = 27.Therefore, log3 27 = 3

Even some seemingly more complicated logarithms can be evaluated
without a calculator. For example, let’s evaluate log 2

3

4
9 mentally.

We ask, “To what exponent must 2
3

be raised in order to get 4
9
? ” We

know 22 = 4 and 32 = 9,so ( 2
3
)
2
= 4

9
. Therefore, log 2

3
( 4

9
) = 2.

Note:
Given a logarithm of the form y = logb (x),evaluate it mentally.

1. Rewrite the argumentx as a power of b : by = x.
2. Use previous knowledge of powers of b identify y by asking, “To what

exponent should b be raised in order to getx?”

Example:
Exercise:



Problem:
Solving Logarithms Mentally

Solve y = log4 (64)without using a calculator.

Solution:

First we rewrite the logarithm in exponential form: 4y = 64.Next, we
ask, “To what exponent must 4 be raised in order to get 64?”

We know
Equation:

43 = 64

Therefore,
Equation:

log 4(64) = 3

Note:
Exercise:

Problem: Solve y = log121 (11)without using a calculator.

Solution:

log121 (11) =
1
2 (recalling that√121 = (121)

1
2 = 11)

Example:



Exercise:

Problem:
Evaluating the Logarithm of a Reciprocal

Evaluate y = log3 ( 1
27 ) without using a calculator.

Solution:

First we rewrite the logarithm in exponential form: 3y = 1
27 . Next,

we ask, “To what exponent must 3 be raised in order to get 1
27 ?”

We know 33 = 27,but what must we do to get the reciprocal, 1
27 ?

Recall from working with exponents that b−a = 1
ba
. We use this

information to write
Equation:

Therefore, log3 ( 1
27 ) = −3.

Note:
Exercise:

Problem: Evaluate y = log2 ( 1
32

) without using a calculator.

Solution:

log2 ( 1
32

) = −5

3−3 = 1
33

= 1
27



Using Common Logarithms

Sometimes we may see a logarithm written without a base. In this case, we
assume that the base is 10. In other words, the expression log (x)means
log10 (x). We call a base-10 logarithm a common logarithm. Common
logarithms are used to measure the Richter Scale mentioned at the
beginning of the section. Scales for measuring the brightness of stars and
the pH of acids and bases also use common logarithms.

Note:
Definition of the Common Logarithm
A common logarithm is a logarithm with base 10.We write log10 (x)
simply as log (x). The common logarithm of a positive numberx satisfies
the following definition.
Forx > 0,
Equation:

y = log (x) is equivalent to 10y = x

We read log (x) as, “the logarithm with base 10 ofx ” or “log base 10 ofx.
”
The logarithm y is the exponent to which 10must be raised to getx.

Note:
Given a common logarithm of the form y = log (x), evaluate it
mentally.

1. Rewrite the argumentx as a power of 10 : 10y = x.
2. Use previous knowledge of powers of 10 to identify y by asking, “To

what exponent must 10 be raised in order to getx?”



Example:
Exercise:

Problem:
Finding the Value of a Common Logarithm Mentally

Evaluate y = log(1000)without using a calculator.

Solution:

First we rewrite the logarithm in exponential form: 10y = 1000.Next,
we ask, “To what exponent must 10 be raised in order to get 1000?”
We know
Equation:

103 = 1000

Therefore, log (1000) = 3.

Note:
Exercise:

Problem: Evaluate y = log(1,000,000).

Solution:

log(1, 000, 000) = 6

Note:
Given a common logarithm with the form y = log (x),evaluate it using
a calculator.



1. Press [LOG].
2. Enter the value given forx,followed by [ ) ].
3. Press [ENTER].

Example:
Exercise:

Problem:
Finding the Value of a Common Logarithm Using a Calculator

Evaluate y = log (321) to four decimal places using a calculator.

Solution:

Press [LOG].
Enter 321, followed by [ ) ].
Press [ENTER].

Rounding to four decimal places, log (321) ≈ 2.5065.

Analysis

Note that 102 = 100 and that 103 = 1000. Since 321 is between 100 and
1000, we know that log (321)must be between log (100) and log (1000).
This gives us the following:
Equation:

Note:
Exercise:

100 < 321 < 1000

2 < 2.5065 < 3



Problem: 

Evaluate y = log (123) to four decimal places using a calculator.

Solution:

log (123) ≈ 2.0899

Example:
Exercise:

Problem:
Rewriting and Solving a Real-World Exponential Model

The amount of energy released from one earthquake was 500 times
greater than the amount of energy released from another. The equation
10x = 500 represents this situation, wherex is the difference in
magnitudes on the Richter Scale. To the nearest thousandth, what was
the difference in magnitudes?

Solution:

We begin by rewriting the exponential equation in logarithmic form.
Equation:

Next we evaluate the logarithm using a calculator:

Press [LOG].
Enter 500,followed by [ ) ].
Press [ENTER].
To the nearest thousandth, log (500) ≈ 2.699.

10x = 500

log (500) = x Use the definition of the common log.



The difference in magnitudes was about 2.699.

Note:
Exercise:

Problem: 

The amount of energy released from one earthquake was 8,500 times
greater than the amount of energy released from another. The equation
10x = 8500 represents this situation, wherex is the difference in
magnitudes on the Richter Scale. To the nearest thousandth, what was
the difference in magnitudes?

Solution:

The difference in magnitudes was about 3.929.

Using Natural Logarithms

The most frequently used base for logarithms is e. Base e logarithms are
important in calculus and some scientific applications; they are called
natural logarithms. The base e logarithm, loge (x), has its own notation,
ln(x).

Most values of ln (x) can be found only using a calculator. The major
exception is that, because the logarithm of 1 is always 0 in any base,
ln 1 = 0. For other natural logarithms, we can use the ln key that can be

found on most scientific calculators. We can also find the natural logarithm
of any power of e using the inverse property of logarithms.

Note:
Definition of the Natural Logarithm



A natural logarithm is a logarithm with base e. We write loge (x) simply
as ln (x). The natural logarithm of a positive number x satisfies the
following definition.
Forx > 0,
Equation:

y = ln (x) is equivalent to ey = x

We read ln (x) as, “the logarithm with base e ofx” or “the natural
logarithm ofx.”
The logarithm y is the exponent to which emust be raised to getx.
Since the functions y = ex and y = ln (x) are inverse functions,
ln (ex) = x for allx and e ln(x)= x forx > 0.

Note:
Given a natural logarithm with the form y = ln (x), evaluate it using a
calculator.

1. Press [LN].
2. Enter the value given forx, followed by [ ) ].
3. Press [ENTER].

Example:
Exercise:

Problem:
Evaluating a Natural Logarithm Using a Calculator

Evaluate y = ln (500) to four decimal places using a calculator.

Solution:

Press [LN].



Enter 500,followed by [ ) ].
Press [ENTER].

Rounding to four decimal places, ln(500) ≈ 6.2146

Note:
Exercise:

Problem: Evaluate ln(−500).

Solution:

It is not possible to take the logarithm of a negative number in the set
of real numbers.

Note:
Access this online resource for additional instruction and practice with
logarithms.

Introduction to Logarithms

Key Equations

Definition of the logarithmic
function

For  x > 0, b > 0, b ≠ 1, 
y = logb (x) if and only if by = x.

http://openstaxcollege.org/l/intrologarithms


Definition of the common
logarithm

For x > 0,y = log (x) if and only
if 10y = x.

Definition of the natural
logarithm

For x > 0,y = ln (x) if and only if
 ey = x.

Key Concepts

The inverse of an exponential function is a logarithmic function, and
the inverse of a logarithmic function is an exponential function.
Logarithmic equations can be written in an equivalent exponential
form, using the definition of a logarithm. See [link].
Exponential equations can be written in their equivalent logarithmic
form using the definition of a logarithm See [link].
Logarithmic functions with base b can be evaluated mentally using
previous knowledge of powers of b. See [link] and [link].
Common logarithms can be evaluated mentally using previous
knowledge of powers of 10. See [link].
When common logarithms cannot be evaluated mentally, a calculator
can be used. See [link].
Real-world exponential problems with base 10 can be rewritten as a
common logarithm and then evaluated using a calculator. See [link].
Natural logarithms can be evaluated using a calculator [link].

Section Exercises

Verbal

Exercise:

Problem: 

What is a base b logarithm? Discuss the meaning by interpreting each
part of the equivalent equations by = x and logbx = y for
b > 0, b ≠ 1.



Solution:

A logarithm is an exponent. Specifically, it is the exponent to which a
base b is raised to produce a given value. In the expressions given, the
base b has the same value. The exponent, y,in the expression by can
also be written as the logarithm, logbx,and the value ofx is the result
of raising b to the power of y.

Exercise:

Problem: 

How is the logarithmic function f(x) = logbx related to the
exponential function g(x) = bx?What is the result of composing these
two functions?

Exercise:

Problem: 

How can the logarithmic equation logbx = y be solved forx using the
properties of exponents?

Solution:

Since the equation of a logarithm is equivalent to an exponential
equation, the logarithm can be converted to the exponential equation
by = x, and then properties of exponents can be applied to solve forx.

Exercise:

Problem: 

Discuss the meaning of the common logarithm. What is its relationship
to a logarithm with base b, and how does the notation differ?

Exercise:

Problem: 

Discuss the meaning of the natural logarithm. What is its relationship
to a logarithm with base b, and how does the notation differ?



Solution:

The natural logarithm is a special case of the logarithm with base b in
that the natural log always has base e. Rather than notating the natural
logarithm as loge (x),the notation used is ln (x).

Algebraic

For the following exercises, rewrite each equation in exponential form.
Exercise:

Problem: log4(q) = m

Exercise:

Problem: loga(b) = c

Solution:

ac = b

Exercise:

Problem: log16 (y) = x

Exercise:

Problem: logx (64) = y

Solution:

xy = 64

Exercise:



Problem: logy (x) = −11

Exercise:

Problem: log15 (a) = b

Solution:

15b = a

Exercise:

Problem: logy (137) = x

Exercise:

Problem: log13 (142) = a

Solution:

13a = 142

Exercise:

Problem: log(v) = t

Exercise:

Problem: ln(w) = n

Solution:

en = w

For the following exercises, rewrite each equation in logarithmic form.
Exercise:



Problem: 4x = y

Exercise:

Problem: cd = k

Solution:

logc(k) = d

Exercise:

Problem: m−7 = n

Exercise:

Problem: 19x = y

Solution:

log19y = x

Exercise:

Problem: x− 10
13 = y

Exercise:

Problem: n4 = 103

Solution:

logn (103) = 4

Exercise:

Problem: ( 7
5 )

m
= n



Exercise:

Problem: yx = 39
100

Solution:

logy (
39
100 ) = x

Exercise:

Problem: 10a = b

Exercise:

Problem: ek = h

Solution:

ln(h) = k

For the following exercises, solve forx by converting the logarithmic
equation to exponential form.
Exercise:

Problem: log3(x) = 2

Exercise:

Problem: log2(x) = −3

Solution:

x = 2−3 = 1
8

Exercise:

Problem: log5(x) = 2



Exercise:

Problem: log3 (x) = 3

Solution:

x = 33 = 27

Exercise:

Problem: log2(x) = 6

Exercise:

Problem: log9(x) =
1
2

Solution:

x = 9
1
2 = 3

Exercise:

Problem: log18(x) = 2

Exercise:

Problem: log6 (x) = −3

Solution:

x = 6−3 = 1
216

Exercise:

Problem: log(x) = 3

Exercise:



Problem: ln(x) = 2

Solution:

x = e2

For the following exercises, use the definition of common and natural
logarithms to simplify.
Exercise:

Problem: log(1008)

Exercise:

Problem: 10log(32)

Solution:

32

Exercise:

Problem: 2log(.0001)

Exercise:

Problem: eln(1.06)

Solution:

1.06

Exercise:

Problem: ln (e−5.03)

Exercise:



Problem: eln(10.125) + 4

Solution:

14.125

Numeric

For the following exercises, evaluate the base b logarithmic expression
without using a calculator.
Exercise:

Problem: log3 ( 1
27 )

Exercise:

Problem: log6(√6)

Solution:

1
2

Exercise:

Problem: log2 ( 1
8 ) + 4

Exercise:

Problem: 6log8(4)

Solution:

4



For the following exercises, evaluate the common logarithmic expression
without using a calculator.
Exercise:

Problem: log(10, 000)

Exercise:

Problem: log(0.001)

Solution:

−3

Exercise:

Problem: log(1) + 7

Exercise:

Problem: 2log(100−3)

Solution:

−12

For the following exercises, evaluate the natural logarithmic expression
without using a calculator.
Exercise:

Problem: ln(e 1
3 )

Exercise:

Problem: ln(1)

Solution:



0

Exercise:

Problem: ln(e−0.225) − 3

Exercise:

Problem: 25ln(e
2
5 )

Solution:

10

Technology

For the following exercises, evaluate each expression using a calculator.
Round to the nearest thousandth.
Exercise:

Problem: log(0.04)

Exercise:

Problem: ln(15)

Solution:

2. 708

Exercise:

Problem: ln ( 4
5 )

Exercise:



Problem: log(√2)

Solution:

0.151

Exercise:

Problem: ln(√2)

Extensions

Exercise:

Problem: 

Isx = 0 in the domain of the function f(x) = log(x)? If so, what is
the value of the function whenx = 0?Verify the result.

Solution:

No, the function has no defined value forx = 0.To verify, suppose
x = 0 is in the domain of the function f(x) = log(x). Then there is
some numbern such thatn = log(0). Rewriting as an exponential
equation gives: 10n = 0, which is impossible since no such real
numbern exists. Therefore,x = 0 is not the domain of the function
f(x) = log(x).

Exercise:

Problem: 

Is f(x) = 0 in the range of the function f(x) = log(x)? If so, for what
value ofx?Verify the result.

Exercise:



Problem: 

Is there a numberx such that lnx = 2? If so, what is that number?
Verify the result.

Solution:

Yes. Suppose there exists a real numberx such that lnx = 2.
Rewriting as an exponential equation givesx = e2, which is a real
number. To verify, letx = e2. Then, by definition,
ln (x) = ln (e2) = 2.

Exercise:

Problem: Is the following true: log3(27)

log4(
1
64 )

= −1?Verify the result.

Exercise:

Problem: Is the following true: ln(e1.725)
ln(1)

= 1.725?Verify the result.

Solution:

No; ln (1) = 0, so
ln(e1.725)

ln(1)
is undefined.

Real-World Applications

Exercise:



Problem: 

The exposure indexEI for a 35 millimeter camera is a measurement of
the amount of light that hits the film. It is determined by the equation
EI = log2 (

f 2

t
), where f is the “f-stop” setting on the camera, and t

is the exposure time in seconds. Suppose the f-stop setting is 8 and the
desired exposure time is 2 seconds. What will the resulting exposure
index be?

Exercise:

Problem: 

Refer to the previous exercise. Suppose the light meter on a camera
indicates anEI of − 2, and the desired exposure time is 16 seconds.
What should the f-stop setting be?

Solution:

2

Exercise:

Problem: 

The intensity levels I of two earthquakes measured on a seismograph
can be compared by the formula log I1

I2
= M1 −M2 whereM is the

magnitude given by the Richter Scale. In August 2009, an earthquake
of magnitude 6.1 hit Honshu, Japan. In March 2011, that same region
experienced yet another, more devastating earthquake, this time with a
magnitude of 9.0.[footnote] How many times greater was the intensity
of the 2011 earthquake? Round to the nearest whole number.
http://earthquake.usgs.gov/earthquakes/world/historical.php. Accessed
3/4/2014.

Glossary

common logarithm



the exponent to which 10 must be raised to getx; log10 (x)  is written
simply as log (x).

logarithm
the exponent to which bmust be raised to getx; written y = logb (x)

natural logarithm
the exponent to which the number emust be raised to getx; loge (x) is
written as ln (x).



Graphs of Logarithmic Functions
In this section, you will:

Identify the domain of a logarithmic function.
Graph logarithmic functions.

In Graphs of Exponential Functions, we saw how creating a graphical representation of an exponential model
gives us another layer of insight for predicting future events. How do logarithmic graphs give us insight into
situations? Because every logarithmic function is the inverse function of an exponential function, we can
think of every output on a logarithmic graph as the input for the corresponding inverse exponential equation.
In other words, logarithms give the cause for an effect.

To illustrate, suppose we invest $2500 in an account that offers an annual interest rate of 5%,compounded
continuously. We already know that the balance in our account for any year t can be found with the equation
A = 2500e0.05t.

But what if we wanted to know the year for any balance? We would need to create a corresponding new
function by interchanging the input and the output; thus we would need to create a logarithmic model for this
situation. By graphing the model, we can see the output (year) for any input (account balance). For instance,
what if we wanted to know how many years it would take for our initial investment to double? [link] shows
this point on the logarithmic graph.

In this section we will discuss the values for which a logarithmic function is defined, and then turn our
attention to graphing the family of logarithmic functions.

Finding the Domain of a Logarithmic Function

Before working with graphs, we will take a look at the domain (the set of input values) for which the
logarithmic function is defined.

Recall that the exponential function is defined as y = bx for any real numberx and constant b > 0, b ≠ 1,
where

The domain of y is (−∞,∞).



The range of y is (0,∞).

In the last section we learned that the logarithmic function y = logb (x) is the inverse of the exponential
function y = bx. So, as inverse functions:

The domain of y = logb (x) is the range of y = bx : (0,∞).
The range of y = logb (x) is the domain of y = bx : (−∞,∞).

Transformations of the parent function y = logb (x) behave similarly to those of other functions. Just as with
other parent functions, we can apply the four types of transformations—shifts, stretches, compressions, and
reflections—to the parent function without loss of shape.

In Graphs of Exponential Functions we saw that certain transformations can change the range of y = bx.
Similarly, applying transformations to the parent function y = logb (x) can change the domain. When finding
the domain of a logarithmic function, therefore, it is important to remember that the domain consists only of
positive real numbers. That is, the argument of the logarithmic function must be greater than zero.

For example, consider f(x) = log4 (2x− 3). This function is defined for any values ofx such that the
argument, in this case 2x− 3, is greater than zero. To find the domain, we set up an inequality and solve for
x :
Equation:

In interval notation, the domain of f(x) = log4 (2x− 3) is (1.5,∞).

Note:
Given a logarithmic function, identify the domain.

1. Set up an inequality showing the argument greater than zero.
2. Solve forx.
3. Write the domain in interval notation.

Example:
Exercise:

Problem:
Identifying the Domain of a Logarithmic Shift

What is the domain of f(x) = log2(x+ 3)?

Solution:

The logarithmic function is defined only when the input is positive, so this function is defined when
x+ 3 > 0. Solving this inequality,
Equation:

2x− 3 > 0 Show the argument greater than zero.

2x > 3 Add 3.

x > 1.5 Divide by 2.



The domain of f(x) = log2(x+ 3) is (−3,∞).

Note:
Exercise:

Problem: What is the domain of f(x) = log5(x− 2) + 1?

Solution:

(2,∞)

Example:
Exercise:

Problem:
Identifying the Domain of a Logarithmic Shift and Reflection

What is the domain of f(x) = log(5 − 2x)?

Solution:

The logarithmic function is defined only when the input is positive, so this function is defined when
5– 2x > 0. Solving this inequality,
Equation:

The domain of f(x) = log(5 − 2x) is (–∞, 5
2 ).

Note:
Exercise:

Problem: What is the domain of f(x) = log(x− 5) + 2?

Solution:

(5,∞)

x+ 3 > 0 The input must be positive.

x > −3 Subtract 3.

5 − 2x > 0 The input must be positive.

− 2x > −5 Subtract 5.

x < 5
2 Divide by  − 2 and switch the inequality.



Graphing Logarithmic Functions

Now that we have a feel for the set of values for which a logarithmic function is defined, we move on to
graphing logarithmic functions. The family of logarithmic functions includes the parent function
y = logb (x) along with all its transformations: shifts, stretches, compressions, and reflections.

We begin with the parent function y = logb (x). Because every logarithmic function of this form is the
inverse of an exponential function with the form y = bx, their graphs will be reflections of each other across
the line y = x. To illustrate this, we can observe the relationship between the input and output values of
y = 2x and its equivalentx = log2(y) in [link].

x −3 −2 −1 0 1 2 3

2x = y 1
8

1
4

1
2 1 2 4 8

log2 (y) = x −3 −2 −1 0 1 2 3

Using the inputs and outputs from [link], we can build another table to observe the relationship between
points on the graphs of the inverse functions f(x) = 2x and g(x) = log2(x). See [link].

f(x) = 2x (−3, 1
8
) (−2, 1

4
) (−1, 1

2
) (0, 1) (1, 2) (2, 4) (3, 8)

g(x) = log2 (x) ( 1
8
, −3) ( 1

4
, −2) ( 1

2
, −1) (1, 0) (2, 1) (4, 2) (8, 3)

As we’d expect, the x- and y-coordinates are reversed for the inverse functions. [link] shows the graph of f
and g.



Observe the following from the graph:

f(x) = 2x has a y-intercept at (0, 1) and g(x) = log2 (x) has an x- intercept at (1, 0).
The domain of f(x) = 2x, (−∞,∞), is the same as the range of g(x) = log2 (x).
The range of f(x) = 2x, (0,∞), is the same as the domain of g(x) = log2 (x).

Note:
Characteristics of the Graph of the Parent Function, f(x) = log (x)
For any real numberx and constant b > 0,b ≠ 1, we can see the following characteristics in the graph of
f(x) = logb (x) :

one-to-one function
vertical asymptote:x = 0
domain: (0,∞)
range: (−∞,∞)
x-intercept: (1, 0) and key point (b, 1)
y-intercept: none
increasing if b > 1
decreasing if 0 < b < 1

See [link].

Notice that the graphs of f (x) = 2x and
g (x) = log2 (x) are reflections about the line y = x.

b



[link] shows how changing the base b in f(x) = logb (x) can affect the graphs. Observe that the graphs
compress vertically as the value of the base increases. (Note: recall that the function ln (x) has base
e ≈ 2. 718.)

Note:
Given a logarithmic function with the form f(x) = logb (x), graph the function.

1. Draw and label the vertical asymptote,x = 0.
2. Plot the x-intercept, (1, 0).
3. Plot the key point (b, 1).
4. Draw a smooth curve through the points.
5. State the domain, (0,∞),the range, (−∞,∞),and the vertical asymptote,x = 0.

The graphs of three logarithmic functions with different
bases, all greater than 1.



Example:
Exercise:

Problem:
Graphing a Logarithmic Function with the Form f(x) = log (x).

Graph f(x) = log5 (x). State the domain, range, and asymptote.

Solution:

Before graphing, identify the behavior and key points for the graph.

Since b = 5 is greater than one, we know the function is increasing. The left tail of the graph will
approach the vertical asymptotex = 0, and the right tail will increase slowly without bound.
The x-intercept is (1, 0).
The key point (5, 1) is on the graph.
We draw and label the asymptote, plot and label the points, and draw a smooth curve through the
points (see [link]).

The domain is (0,∞), the range is (−∞,∞), and the vertical asymptote isx = 0.

Note:
Exercise:

Problem: Graph f(x) = log 1
5
(x). State the domain, range, and asymptote.

Solution:

b



The domain is (0,∞),the range is (−∞,∞), and the vertical asymptote isx = 0.

Graphing Transformations of Logarithmic Functions

As we mentioned in the beginning of the section, transformations of logarithmic graphs behave similarly to
those of other parent functions. We can shift, stretch, compress, and reflect the parent function y = logb (x)
without loss of shape.

Graphing a Horizontal Shift of f(x) = log (x)

When a constant c is added to the input of the parent function f(x) = logb(x), the result is a horizontal shift
c units in the opposite direction of the sign on c. To visualize horizontal shifts, we can observe the general
graph of the parent functionf(x) = logb (x) and for c > 0 alongside the shift left, g(x) = logb (x+ c), and
the shift right,h(x) = logb (x− c). See [link].

b



Note:
Horizontal Shifts of the Parent Function y = log (x)
For any constant c,the function f(x) = logb (x+ c)

shifts the parent function y = logb (x) left c units if c > 0.
shifts the parent function y = logb (x) right c units if c < 0.
has the vertical asymptotex = −c.
has domain (−c,∞).
has range (−∞,∞).

Note:
Given a logarithmic function with the form f(x) = logb (x+ c), graph the translation.

1. Identify the horizontal shift:

a. If c > 0,shift the graph of f(x) = logb (x) left c units.
b. If c < 0,shift the graph of f(x) = logb (x) right c units.

2. Draw the vertical asymptotex = −c.
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by

subtracting c from thex coordinate.
4. Label the three points.
5. The Domain is (−c,∞),the range is (−∞,∞), and the vertical asymptote isx = −c.

b



Example:
Exercise:

Problem:
Graphing a Horizontal Shift of the Parent Function y = log (x)

Sketch the horizontal shift f(x) = log3(x− 2) alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and asymptote.

Solution:

Since the function is f(x) = log3(x− 2), we noticex+ (−2) = x– 2.

Thus c = −2,so c < 0.This means we will shift the function f(x) = log3(x) right 2 units.

The vertical asymptote isx = −(−2) orx = 2.

Consider the three key points from the parent function, ( 1
3
, −1),(1, 0),and (3, 1).

The new coordinates are found by adding 2 to thex coordinates.

Label the points ( 7
3
, −1),(3, 0),and (5, 1).

The domain is (2,∞),the range is (−∞,∞),and the vertical asymptote isx = 2.

Note:
Exercise:

Problem: 

Sketch a graph of f(x) = log3(x+ 4) alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and asymptote.

Solution:

b



The domain is (−4,∞),the range (−∞,∞),and the asymptotex =–4.

Graphing a Vertical Shift of y = log (x)

When a constant d is added to the parent function f(x) = logb (x),the result is a vertical shift d units in the
direction of the sign on d. To visualize vertical shifts, we can observe the general graph of the parent
function f(x) = logb (x) alongside the shift up, g(x) = logb (x) + d and the shift down,
h(x) = logb (x) − d.See [link].

b



Note:
Vertical Shifts of the Parent Function y = log (x)
For any constant d,the function f(x) = logb (x) + d

shifts the parent function y = logb (x) up d units if d > 0.
shifts the parent function y = logb (x) down d units if d < 0.
has the vertical asymptotex = 0.
has domain (0,∞).
has range (−∞,∞).

Note:
Given a logarithmic function with the form f(x) = logb (x) + d, graph the translation.

1. Identify the vertical shift:

If d > 0, shift the graph of f(x) = logb (x) up d  units.
If d < 0, shift the graph of f(x) = logb (x)down d  units.

2. Draw the vertical asymptotex = 0.

b



3. Identify three key points from the parent function. Find new coordinates for the shifted functions by
adding d to the y coordinate.

4. Label the three points.
5. The domain is (0,∞),the range is (−∞,∞),and the vertical asymptote isx = 0.

Example:
Exercise:

Problem:
Graphing a Vertical Shift of the Parent Function y = log (x)

Sketch a graph of f(x) = log3(x) − 2 alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and asymptote.

Solution:

Since the function is f(x) = log3(x) − 2,we will notice d =–2.Thus d < 0.

This means we will shift the function f(x) = log3(x) down 2 units.

The vertical asymptote isx = 0.

Consider the three key points from the parent function, ( 1
3 , −1),(1, 0),and (3, 1).

The new coordinates are found by subtracting 2 from the y coordinates.

Label the points ( 1
3
, −3),(1,−2), and (3,−1).

The domain is (0,∞),the range is (−∞,∞), and the vertical asymptote isx = 0.

b



The domain is (0,∞),the range is (−∞,∞),and the vertical asymptote isx = 0.

Note:
Exercise:

Problem: 

Sketch a graph of f(x) = log2(x) + 2 alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and asymptote.

Solution:

The domain is (0,∞),the range is (−∞,∞),and the vertical asymptote isx = 0.

Graphing Stretches and Compressions of y = log (x)

When the parent function f(x) = logb (x) is multiplied by a constant a > 0, the result is a vertical stretch or
compression of the original graph. To visualize stretches and compressions, we set a > 1 and observe the
general graph of the parent function f(x) = logb (x) alongside the vertical stretch, g(x) = alogb (x) and the
vertical compression,h(x) = 1

a
logb (x).See [link].

b



Note:
Vertical Stretches and Compressions of the Parent Function y = log (x)
For any constant a > 1,the function f(x) = alogb (x)

stretches the parent function y = logb (x) vertically by a factor of a if a > 1.
compresses the parent function y = logb (x) vertically by a factor of a if 0 < a < 1.
has the vertical asymptotex = 0.
has the x-intercept (1, 0).
has domain (0,∞).
has range (−∞,∞).

Note:
Given a logarithmic function with the form f(x) = alogb (x),a > 0,graph the translation.

1. Identify the vertical stretch or compressions:

If |a| > 1,the graph of f(x) = logb (x) is stretched by a factor of a units.
If |a| < 1,the graph of f(x) = logb (x) is compressed by a factor of a units.

b



2. Draw the vertical asymptotex = 0.
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by

multiplying the y coordinates by a.
4. Label the three points.
5. The domain is (0,∞),the range is (−∞,∞),and the vertical asymptote isx = 0.

Example:
Exercise:

Problem:
Graphing a Stretch or Compression of the Parent Function y = log (x)

Sketch a graph of f(x) = 2log4(x) alongside its parent function. Include the key points and asymptote
on the graph. State the domain, range, and asymptote.

Solution:

Since the function is f(x) = 2log4(x),we will notice a = 2.

This means we will stretch the function f(x) = log4(x) by a factor of 2.

The vertical asymptote isx = 0.

Consider the three key points from the parent function, ( 1
4 , −1),(1, 0 ), and (4, 1).

The new coordinates are found by multiplying the y coordinates by 2.

Label the points ( 1
4 , −2),(1, 0) , and (4, 2).

The domain is (0,∞), the range is (−∞,∞ ), and the vertical asymptote isx = 0. See [link].

The domain is (0,∞), the range is (−∞,∞), and the vertical asymptote isx = 0.

b



Note:
Exercise:

Problem: 

Sketch a graph of f(x) = 1
2 log4(x) alongside its parent function. Include the key points and

asymptote on the graph. State the domain, range, and asymptote.

Solution:

The domain is (0,∞),the range is (−∞,∞),and the vertical asymptote isx = 0.

Example:
Exercise:

Problem:
Combining a Shift and a Stretch

Sketch a graph of f(x) = 5 log(x+ 2). State the domain, range, and asymptote.

Solution:

Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then
stretch the function vertically by a factor of 5, as in [link]. The vertical asymptote will be shifted to
x = −2.The x-intercept will be (−1,0). The domain will be (−2,∞). Two points will help give the
shape of the graph: (−1, 0) and (8, 5 ). We chosex = 8 as the x-coordinate of one point to graph
because whenx = 8, x+ 2 = 10, the base of the common logarithm.



The domain is (−2,∞),the range is (−∞,∞),and the vertical asymptote isx = −2.

Note:
Exercise:

Problem: 

Sketch a graph of the function f(x) = 3 log(x− 2) + 1. State the domain, range, and asymptote.

Solution:



The domain is (2,∞),the range is (−∞,∞),and the vertical asymptote isx = 2.

Graphing Reflections of f(x) = log (x)

When the parent function f(x) = logb (x) is multiplied by−1,the result is a reflection about the x-axis.
When the input is multiplied by−1,the result is a reflection about the y-axis. To visualize reflections, we
restrict b > 1, and observe the general graph of the parent function f(x) = logb (x) alongside the reflection
about the x-axis, g(x) = −logb (x) and the reflection about the y-axis,h(x) = logb (−x).

Note:
Reflections of the Parent Function y = log (x)
The function f(x) = −logb (x)

reflects the parent function y = logb (x) about the x-axis.
has domain, (0,∞), range, (−∞,∞), and vertical asymptote,x = 0, which are unchanged from the
parent function.

b

b



 
The function f(x) = logb (−x)

reflects the parent function y = logb (x) about the y-axis.
has domain (−∞, 0).
has range, (−∞,∞), and vertical asymptote,x = 0, which are unchanged from the parent function.

Note:
Given a logarithmic function with the parent function f(x) = logb (x), graph a translation.

If f(x) = −logb(x) If f(x) = logb(−x)

1. Draw the vertical asymptote,x = 0. 1. Draw the vertical asymptote,x = 0.

2. Plot the x-intercept, (1, 0). 2. Plot the x-intercept, (1, 0).

3. Reflect the graph of the parent function
f(x) = logb (x) about the x-axis.

3. Reflect the graph of the parent function
f(x) = logb (x) about the y-axis.

4. Draw a smooth curve through the points. 4. Draw a smooth curve through the points.

5. State the domain, (0,∞), the range,
(−∞,∞), and the vertical asymptote
x = 0.

5. State the domain, (−∞, 0), the range,
(−∞,∞), and the vertical asymptote
x = 0.

Example:
Exercise:

Problem:
Graphing a Reflection of a Logarithmic Function

Sketch a graph of f(x) = log(−x) alongside its parent function. Include the key points and asymptote
on the graph. State the domain, range, and asymptote.



Solution:

Before graphing f(x) = log(−x),identify the behavior and key points for the graph.

Since b = 10 is greater than one, we know that the parent function is increasing. Since the input
value is multiplied by−1,f is a reflection of the parent graph about the y-axis. Thus,
f(x) = log(−x)will be decreasing asxmoves from negative infinity to zero, and the right tail of
the graph will approach the vertical asymptotex = 0.
The x-intercept is (−1, 0).
We draw and label the asymptote, plot and label the points, and draw a smooth curve through the
points.

The domain is (−∞, 0),the range is (−∞,∞),and the vertical asymptote isx = 0.

Note:
Exercise:

Problem: Graph f(x) = − log(−x). State the domain, range, and asymptote.

Solution:



The domain is (−∞, 0),the range is (−∞,∞),and the vertical asymptote isx = 0.

Note:
Given a logarithmic equation, use a graphing calculator to approximate solutions.

1. Press [Y=]. Enter the given logarithm equation or equations as Y = and, if needed, Y =.
2. Press [GRAPH] to observe the graphs of the curves and use [WINDOW] to find an appropriate view

of the graphs, including their point(s) of intersection.
3. To find the value ofx, we compute the point of intersection. Press [2ND] then [CALC]. Select

“intersect” and press [ENTER] three times. The point of intersection gives the value ofx,for the
point(s) of intersection.

Example:
Exercise:

Problem:
Approximating the Solution of a Logarithmic Equation

Solve 4 ln (x) + 1 = −2 ln (x− 1) graphically. Round to the nearest thousandth.

Solution:

Press [Y=] and enter 4 ln (x) + 1 next to Y =. Then enter − 2 ln (x− 1) next to Y =. For a window,
use the values 0 to 5 forx and –10 to 10 for y. Press [GRAPH]. The graphs should intersect
somewhere a little to right ofx = 1.

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three
times. The x-coordinate of the point of intersection is displayed as 1.3385297. (Your answer may be
different if you use a different window or use a different value for Guess?) So, to the nearest
thousandth,x ≈ 1.339.

Note:
Exercise:

Problem: Solve 5 log (x+ 2) = 4 − log (x) graphically. Round to the nearest thousandth.

Solution:

x ≈ 3.049

Summarizing Translations of the Logarithmic Function

Now that we have worked with each type of translation for the logarithmic function, we can summarize each
in [link] to arrive at the general equation for translating exponential functions.

1 2

1 2



Translations of the Parent Function y = logb (x)

Translation Form

Shift

Horizontally c units to the left
Vertically d units up

y = logb (x+ c) + d

Stretch and Compress

Stretch if |a| > 1
Compression if |a| < 1

y = alogb (x)

Reflect about the x-axis y = −logb (x)

Reflect about the y-axis y = logb (−x)

General equation for all translations y = alogb(x+ c) + d

Note:
Translations of Logarithmic Functions
All translations of the parent logarithmic function, y = logb (x), have the form
Equation:

 f(x) = alogb (x+ c) + d

where the parent function, y = logb (x), b > 1,is

shifted vertically up d units.
shifted horizontally to the left c units.
stretched vertically by a factor of |a| if |a| > 0.
compressed vertically by a factor of |a| if 0 < |a| < 1.
reflected about the x-axis when a < 0.

For f (x) = log (−x), the graph of the parent function is reflected about the y-axis.

Example:
Exercise:

Problem:
Finding the Vertical Asymptote of a Logarithm Graph

What is the vertical asymptote of f(x) = −2log3(x+ 4) + 5?

Solution:



The vertical asymptote is atx = −4.

Analysis

The coefficient, the base, and the upward translation do not affect the asymptote. The shift of the curve 4
units to the left shifts the vertical asymptote tox = −4.

Note:
Exercise:

Problem: What is the vertical asymptote of f(x) = 3 + ln(x− 1)?

Solution:

x = 1

Example:
Exercise:

Problem:
Finding the Equation from a Graph

Find a possible equation for the common logarithmic function graphed in [link].

Solution:

This graph has a vertical asymptote atx = –2 and has been vertically reflected. We do not know yet the
vertical shift or the vertical stretch. We know so far that the equation will have form:
Equation:

f(x) = −a log(x+ 2) + k

It appears the graph passes through the points (–1, 1) and (2, –1). Substituting (–1, 1),



Equation:

Next, substituting in (2, –1),
Equation:

This gives us the equation f(x) =– 2
log(4) log(x+ 2) + 1.

Analysis

We can verify this answer by comparing the function values in [link] with the points on the graph in [link].

x −1 0 1 2 3

f(x) 1 0 −0.58496 −1 −1.3219

x 4 5 6 7 8

f(x) −1.5850 −1.8074 −2 −2.1699 −2.3219

Note:
Exercise:

Problem: Give the equation of the natural logarithm graphed in [link].

1 = −a log(−1 + 2) + k Substitute (−1, 1).

1 = −a log(1) + k Arithmetic.

1 = k log(1) = 0.

−1 = −a log(2 + 2) + 1 Plug in (2,−1).

−2 = −a log(4) Arithmetic.

  a = 2
log(4) Solve for a.



Solution:

f(x) = 2 ln(x+ 3) − 1

Note:
Is it possible to tell the domain and range and describe the end behavior of a function just by looking
at the graph?
Yes, if we know the function is a general logarithmic function. For example, look at the graph in [link]. The
graph approachesx = −3 (or thereabouts) more and more closely, sox = −3 is, or is very close to, the
vertical asymptote. It approaches from the right, so the domain is all points to the right, {x |x > −3}. The
range, as with all general logarithmic functions, is all real numbers. And we can see the end behavior
because the graph goes down as it goes left and up as it goes right. The end behavior is that as
x → −3+, f(x) → −∞ and asx → ∞, f(x) → ∞.

Note:
Access these online resources for additional instruction and practice with graphing logarithms.

Graph an Exponential Function and Logarithmic Function
Match Graphs with Exponential and Logarithmic Functions
Find the Domain of Logarithmic Functions

Key Equations

http://openstaxcollege.org/l/graphexplog
http://openstaxcollege.org/l/matchexplog
http://openstaxcollege.org/l/domainlog


General Form for the Translation of the Parent Logarithmic Function
 f(x) = logb (x)

 f(x) = alogb (x+ c) + d

Key Concepts

To find the domain of a logarithmic function, set up an inequality showing the argument greater than
zero, and solve forx. See [link] and [link]
The graph of the parent function f(x) = logb (x) has an x-intercept at (1, 0),domain (0,∞),range
(−∞,∞),vertical asymptotex = 0,and

if b > 1,the function is increasing.
if 0 < b < 1, the function is decreasing.

See [link].
The equation f(x) = logb (x+ c) shifts the parent function y = logb (x) horizontally

left c units if c > 0.
right c units if c < 0.

See [link].
The equation f(x) = logb (x) + d shifts the parent function y = logb (x) vertically

up d units if d > 0.
down d units if d < 0.

See [link].
For any constant a > 0, the equation f(x) = alogb (x)

stretches the parent function y = logb (x) vertically by a factor of a if |a| > 1.
compresses the parent function y = logb (x) vertically by a factor of a if |a| < 1.

See [link] and [link].
When the parent function y = logb (x) is multiplied by − 1, the result is a reflection about the x-axis.
When the input is multiplied by − 1, the result is a reflection about the y-axis.

The equation f(x) = −logb (x) represents a reflection of the parent function about the x-axis.
The equation f(x) = logb (−x) represents a reflection of the parent function about the y-axis.

See [link].

A graphing calculator may be used to approximate solutions to some logarithmic equations See
[link].

All translations of the logarithmic function can be summarized by the general equation
 f(x) = alogb (x+ c) + d. See [link].
Given an equation with the general form  f(x) = alogb (x+ c) + d,we can identify the vertical
asymptotex = −c for the transformation. See [link].
Using the general equation f(x) = alogb (x+ c) + d,we can write the equation of a logarithmic
function given its graph. See [link].

Section Exercises



Verbal

Exercise:

Problem: 

The inverse of every logarithmic function is an exponential function and vice-versa. What does this tell
us about the relationship between the coordinates of the points on the graphs of each?

Solution:

Since the functions are inverses, their graphs are mirror images about the line y = x. So for every point
(a, b) on the graph of a logarithmic function, there is a corresponding point (b, a) on the graph of its
inverse exponential function.

Exercise:

Problem: What type(s) of translation(s), if any, affect the range of a logarithmic function?

Exercise:

Problem: What type(s) of translation(s), if any, affect the domain of a logarithmic function?

Solution:

Shifting the function right or left and reflecting the function about the y-axis will affect its domain.

Exercise:

Problem: Consider the general logarithmic function f(x) = logb (x). Why can’tx be zero?

Exercise:

Problem: Does the graph of a general logarithmic function have a horizontal asymptote? Explain.

Solution:

No. A horizontal asymptote would suggest a limit on the range, and the range of any logarithmic
function in general form is all real numbers.

Algebraic

For the following exercises, state the domain and range of the function.
Exercise:

Problem: f(x) = log3 (x+ 4)

Exercise:

Problem: h(x) = ln ( 1
2 − x)

Solution:



Domain: (−∞, 1
2 ); Range: (−∞,∞)

Exercise:

Problem: g(x) = log5 (2x+ 9) − 2

Exercise:

Problem: h(x) = ln (4x+ 17) − 5

Solution:

Domain: (− 17
4 ,∞); Range: (−∞,∞)

Exercise:

Problem: f(x) = log2 (12 − 3x) − 3

For the following exercises, state the domain and the vertical asymptote of the function.
Exercise:

Problem: f(x) = logb(x− 5)

Solution:

Domain: (5,∞); Vertical asymptote:x = 5

Exercise:

Problem: g(x) = ln(3 − x)

Exercise:

Problem: f(x) = log(3x+ 1)

Solution:

Domain: (− 1
3
,∞); Vertical asymptote:x = − 1

3

Exercise:

Problem: f(x) = 3 log(−x) + 2

Exercise:

Problem: g(x) = − ln(3x+ 9) − 7

Solution:

Domain: (−3,∞); Vertical asymptote:x = −3

For the following exercises, state the domain, vertical asymptote, and end behavior of the function.
Exercise:



Problem: f(x) = ln (2 − x)

Exercise:

Problem: f(x) = log (x− 3
7
)

Solution:

Domain: ( 3
7 ,∞); 

Vertical asymptote: x = 3
7 ; End behavior: as x → ( 3

7 )
+
, f(x) → −∞ and as x → ∞, f(x) → ∞

Exercise:

Problem: h(x) = − log (3x− 4) + 3

Exercise:

Problem: g(x) = ln (2x+ 6) − 5

Solution:

Domain: (−3,∞); Vertical asymptote: x = −3;  
End behavior: as x → −3+, f(x) → −∞ and as x → ∞, f(x) → ∞

Exercise:

Problem: f(x) = log3 (15 − 5x) + 6

For the following exercises, state the domain, range, and x- and y-intercepts, if they exist. If they do not exist,
write DNE.
Exercise:

Problem: h(x) = log4 (x− 1) + 1

Solution:

Domain: (1,∞); Range: (−∞,∞); Vertical asymptote:x = 1; x-intercept: ( 5
4 , 0); y-intercept: DNE

Exercise:

Problem: f(x) = log (5x+ 10) + 3

Exercise:

Problem: g(x) = ln (−x) − 2

Solution:

Domain: (−∞, 0); Range: (−∞,∞); Vertical asymptote:x = 0; x-intercept: (−e2, 0); y-intercept:
DNE

Exercise:



Problem: f(x) = log2 (x+ 2) − 5

Exercise:

Problem: h(x) = 3 ln (x) − 9

Solution:

Domain: (0,∞); Range: (−∞,∞);  Vertical asymptote: x = 0; x-intercept: (e3, 0); y-intercept:
DNE

Graphical

For the following exercises, match each function in [link] with the letter corresponding to its graph.

Exercise:

Problem: d(x) = log (x)

Exercise:

Problem: f(x) = ln(x)

Solution:

B

Exercise:



Problem: g(x) = log2 (x)

Exercise:

Problem: h(x) = log5 (x)

Solution:

C

Exercise:

Problem: j(x) = log25 (x)

For the following exercises, match each function in [link] with the letter corresponding to its graph.

Exercise:

Problem: f(x) = log 1
3
(x)

Solution:

B

Exercise:

Problem: g(x) = log2 (x)

Exercise:

Problem: h(x) = log 3
4
(x)



Solution:

C

For the following exercises, sketch the graphs of each pair of functions on the same axis.
Exercise:

Problem: f(x) = log(x) and g(x) = 10x

Exercise:

Problem: f(x) = log(x) and g(x) = log 1
2
(x)

Solution:

Exercise:

Problem: f(x) = log4(x) and g(x) = ln(x)

Exercise:

Problem: f(x) = ex and g(x) = ln(x)

Solution:



For the following exercises, match each function in [link] with the letter corresponding to its graph.

Exercise:

Problem: f(x) = log4 (−x+ 2)

Exercise:

Problem: g(x) = −log4 (x+ 2)

Solution:

C

Exercise:

Problem: h(x) = log4 (x+ 2)

For the following exercises, sketch the graph of the indicated function.
Exercise:



Problem: f(x) = log2(x+ 2)

Solution:

Exercise:

Problem: f(x) = 2 log(x)

Exercise:

Problem: f(x) = ln(−x)

Solution:

Exercise:

Problem: g(x) = log (4x+ 16) + 4

Exercise:



Problem: g(x) = log (6 − 3x) + 1

Solution:

Exercise:

Problem: h(x) = − 1
2
ln (x+ 1) − 3

For the following exercises, write a logarithmic equation corresponding to the graph shown.
Exercise:

Problem: Use y = log2(x) as the parent function.

Solution:

f(x) = log2(−(x− 1))

Exercise:



Problem: Use f(x) = log3(x) as the parent function.

Exercise:

Problem: Use f(x) = log4(x) as the parent function.

Solution:

f(x) = 3log4(x+ 2)

Exercise:

Problem: Use f(x) = log5(x) as the parent function.



Technology

For the following exercises, use a graphing calculator to find approximate solutions to each equation.
Exercise:

Problem: log (x− 1) + 2 = ln (x− 1) + 2

Solution:

x = 2

Exercise:

Problem: log (2x− 3) + 2 = − log (2x− 3) + 5

Exercise:

Problem: ln (x− 2) = − ln (x+ 1)

Solution:

x ≈ 2.303

Exercise:

Problem: 2 ln (5x+ 1) = 1
2 ln (−5x) + 1

Exercise:

Problem: 13 log (1 − x) = log (x+ 1) + 1
3

Solution:



x ≈ −0.472

Extensions

Exercise:

Problem: 

Let b be any positive real number such that b ≠ 1.What must logb1 be equal to? Verify the result.

Exercise:

Problem: 

Explore and discuss the graphs of f(x) = log 1
2
(x) and g(x) = −log2 (x). Make a conjecture based on

the result.

Solution:

The graphs of f(x) = log 1
2
(x) and g(x) = −log2 (x) appear to be the same; Conjecture: for any

positive base b ≠ 1, logb (x) = −log 1
b
(x).

Exercise:

Problem: Prove the conjecture made in the previous exercise.

Exercise:

Problem: What is the domain of the function f(x) = ln ( x+2
x−4 )?Discuss the result.

Solution:

Recall that the argument of a logarithmic function must be positive, so we determine where x+2
x−4 > 0 .

From the graph of the function f (x) = x+2
x−4 , note that the graph lies above the x-axis on the interval

(−∞,−2) and again to the right of the vertical asymptote, that is (4,∞). Therefore, the domain is
(−∞,−2) ∪ (4,∞).



Exercise:

Problem: 

Use properties of exponents to find the x-intercepts of the function f(x) = log (x2 + 4x+ 4)
algebraically. Show the steps for solving, and then verify the result by graphing the function.



Logarithmic Properties
In this section, you will:

Use the product rule for logarithms.
Use the quotient rule for logarithms.
Use the power rule for logarithms.
Expand logarithmic expressions.
Condense logarithmic expressions.
Use the change-of-base formula for logarithms.

In chemistry, pH is used as a measure of the acidity or alkalinity of a substance. The pH scale runs from 0 to 14.
Substances with a pH less than 7 are considered acidic, and substances with a pH greater than 7 are said to be
alkaline. Our bodies, for instance, must maintain a pH close to 7.35 in order for enzymes to work properly. To get a
feel for what is acidic and what is alkaline, consider the following pH levels of some common substances:

Battery acid: 0.8
Stomach acid: 2.7
Orange juice: 3.3
Pure water: 7 (at 25° C)
Human blood: 7.35
Fresh coconut: 7.8
Sodium hydroxide (lye): 14

To determine whether a solution is acidic or alkaline, we find its pH, which is a measure of the number of active
positive hydrogen ions in the solution. The pH is defined by the following formula, where a is the concentration of
hydrogen ion in the solution
Equation:

The pH of hydrochloric
acid is tested with litmus

paper. (credit: David
Berardan)

pH = − log([H+])

      = log( 1
[H+] )



The equivalence of − log ([H+]) and log( 1
[H+]

) is one of the logarithm properties we will examine in this
section.

Using the Product Rule for Logarithms

Recall that the logarithmic and exponential functions “undo” each other. This means that logarithms have similar
properties to exponents. Some important properties of logarithms are given here. First, the following properties are
easy to prove.
Equation:

For example, log51 = 0 since 50 = 1.And log55 = 1 since 51 = 5.

Next, we have the inverse property.
Equation:

For example, to evaluate log (100),we can rewrite the logarithm as log10 (10
2), and then apply the inverse

property logb (b
x) = x to get log10 (10

2) = 2.

To evaluate eln(7),we can rewrite the logarithm as eloge7, and then apply the inverse property blogbx = x to get
eloge7 = 7.

Finally, we have the one-to-one property.
Equation:

logbM = logbN  if and only if  M = N

We can use the one-to-one property to solve the equation log3 (3x) = log3 (2x+ 5) forx. Since the bases are the
same, we can apply the one-to-one property by setting the arguments equal and solving forx :
Equation:

But what about the equation log3 (3x) + log3 (2x+ 5) = 2?The one-to-one property does not help us in this
instance. Before we can solve an equation like this, we need a method for combining terms on the left side of the
equation.

Recall that we use the product rule of exponents to combine the product of exponents by adding:xaxb = xa+b. We
have a similar property for logarithms, called the product rule for logarithms, which says that the logarithm of a
product is equal to a sum of logarithms. Because logs are exponents, and we multiply like bases, we can add the
exponents. We will use the inverse property to derive the product rule below.

Given any real numberx and positive real numbers M,N , and b, where b ≠ 1, we will show
Equation:

logb 1 = 0

logb b = 1

logb(b
x) = x

   blogbx = x,x > 0

3x = 2x+ 5 Set the arguments equal.

x = 5 Subtract 2x.



logb (MN)=logb (M) + logb (N).

Letm = logbM andn = logbN . In exponential form, these equations are bm = M and bn = N . It follows that
Equation:

Note that repeated applications of the product rule for logarithms allow us to simplify the logarithm of the product
of any number of factors. For example, consider logb(wxyz). Using the product rule for logarithms, we can
rewrite this logarithm of a product as the sum of logarithms of its factors:
Equation:

logb(wxyz) = logbw+ logbx+ logby+ logbz

Note:
The Product Rule for Logarithms
The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of
individual logarithms.
Equation:

logb(MN) = logb (M) + logb (N) for b > 0

Note:
Given the logarithm of a product, use the product rule of logarithms to write an equivalent sum of
logarithms.

1. Factor the argument completely, expressing each whole number factor as a product of primes.
2. Write the equivalent expression by summing the logarithms of each factor.

Example:
Exercise:

Problem:
Using the Product Rule for Logarithms

Expand log3 (30x (3x+ 4)).

Solution:

We begin by factoring the argument completely, expressing 30 as a product of primes.
Equation:

log3 (30x (3x+ 4)) = log3 (2 ⋅ 3 ⋅ 5 ⋅ x ⋅ (3x+ 4))

logb (MN) = logb (b
mbn) Substitute for M  and N .

= logb (b
m+n) Apply the product rule for exponents.

= m+ n Apply the inverse property of logs.

= logb (M) + logb (N) Substitute for m and n.



Next we write the equivalent equation by summing the logarithms of each factor.
Equation:

log3 (30x (3x+ 4)) = log3 (2) + log3 (3) + log3 (5) + log3 (x) + log3 (3x+ 4)

Note:
Exercise:

Problem: Expand logb(8k).

Solution:

logb2 + logb2 + logb2 + logbk = 3logb2 + logbk

Using the Quotient Rule for Logarithms

For quotients, we have a similar rule for logarithms. Recall that we use the quotient rule of exponents to combine
the quotient of exponents by subtracting: xa

xb
= xa−b. The quotient rule for logarithms says that the logarithm of

a quotient is equal to a difference of logarithms. Just as with the product rule, we can use the inverse property to
derive the quotient rule.

Given any real numberx and positive real numbersM,N , and b, where b ≠ 1, we will show
Equation:

logb(
M

N
)=logb (M) − logb (N).

Letm = logbM andn = logbN . In exponential form, these equations are bm = M and bn = N . It follows that
Equation:

For example, to expand log( 2x2+6x
3x+9 ),we must first express the quotient in lowest terms. Factoring and canceling

we get,
Equation:

Next we apply the quotient rule by subtracting the logarithm of the denominator from the logarithm of the
numerator. Then we apply the product rule.
Equation:

logb (
M
N
) = logb (

bm

bn
) Substitute for M  and N .

= logb (b
m−n) Apply the quotient rule for exponents.

= m− n Apply the inverse property of logs.

= logb (M) − logb (N) Substitute for m and n.

log( 2x2+6x
3x+9 ) = log( 2x(x+3)

3(x+3)
) Factor the numerator and denominator.

                        = log ( 2x
3 ) Cancel the common factors.



Note:
The Quotient Rule for Logarithms
The quotient rule for logarithms can be used to simplify a logarithm or a quotient by rewriting it as the
difference of individual logarithms.
Equation:

logb(
M

N
) = logbM − logbN

Note:
Given the logarithm of a quotient, use the quotient rule of logarithms to write an equivalent difference of
logarithms.

1. Express the argument in lowest terms by factoring the numerator and denominator and canceling common
terms.

2. Write the equivalent expression by subtracting the logarithm of the denominator from the logarithm of the
numerator.

3. Check to see that each term is fully expanded. If not, apply the product rule for logarithms to expand
completely.

Example:
Exercise:

Problem:
Using the Quotient Rule for Logarithms

Expand log2(
15x(x−1)

(3x+4)(2−x)
).

Solution:

First we note that the quotient is factored and in lowest terms, so we apply the quotient rule.
Equation:

log2(
15x(x− 1)

(3x+ 4)(2 − x)
) = log2 (15x(x− 1)) − log2 ((3x+ 4)(2 − x))

Notice that the resulting terms are logarithms of products. To expand completely, we apply the product rule,
noting that the prime factors of the factor 15 are 3 and 5.
Equation:

log ( 2x
3 ) = log(2x) − log(3)

              = log(2) + log(x) − log(3)

log2(15x(x− 1)) − log2((3x+ 4)(2 − x)) = [log2(3) + log2(5) + log2(x) + log2(x− 1)] − [log2(3x+ 4) +

                                                                  = log2(3) + log2(5) + log2(x) + log2(x− 1) − log2(3x+ 4) − log



Analysis

There are exceptions to consider in this and later examples. First, because denominators must never be zero, this
expression is not defined forx = − 4

3
andx = 2.Also, since the argument of a logarithm must be positive, we

note as we observe the expanded logarithm, thatx > 0,x > 1,x > − 4
3
, andx < 2.Combining these conditions

is beyond the scope of this section, and we will not consider them here or in subsequent exercises.

Note:
Exercise:

Problem: Expand log3(
7x2+21x

7x(x−1)(x−2)
).

Solution:

log3 (x+ 3) − log3 (x− 1) − log3 (x− 2)

Using the Power Rule for Logarithms

We’ve explored the product rule and the quotient rule, but how can we take the logarithm of a power, such asx2?
One method is as follows:
Equation:

Notice that we used the product rule for logarithms to find a solution for the example above. By doing so, we have
derived the power rule for logarithms, which says that the log of a power is equal to the exponent times the log
of the base. Keep in mind that, although the input to a logarithm may not be written as a power, we may be able to
change it to a power. For example,
Equation:

Note:
The Power Rule for Logarithms
The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of
the exponent times the logarithm of the base.
Equation:

logb (M
n) = nlogbM

Note:

logb (x
2) = logb (x ⋅ x)

= logbx+ logbx

= 2logbx

100 = 102 √3 = 3
1
2

1
e
= e−1



Given the logarithm of a power, use the power rule of logarithms to write an equivalent product of a factor
and a logarithm.

1. Express the argument as a power, if needed.
2. Write the equivalent expression by multiplying the exponent times the logarithm of the base.

Example:
Exercise:

Problem:
Expanding a Logarithm with Powers

Expand log2x5.

Solution:

The argument is already written as a power, so we identify the exponent, 5, and the base,x, and rewrite the
equivalent expression by multiplying the exponent times the logarithm of the base.
Equation:

log2 (x
5) = 5log2x

Note:
Exercise:

Problem: Expand lnx2.

Solution:

2 lnx

Example:
Exercise:

Problem:
Rewriting an Expression as a Power before Using the Power Rule

Expand log3 (25) using the power rule for logs.

Solution:

Expressing the argument as a power, we get log3 (25) = log3 (5
2).

Next we identify the exponent, 2, and the base, 5, and rewrite the equivalent expression by multiplying the
exponent times the logarithm of the base.
Equation:

log3 (5
2) = 2log3 (5)



Note:
Exercise:

Problem: Expand ln ( 1
x2 ).

Solution:

−2 ln(x)

Example:
Exercise:

Problem:
Using the Power Rule in Reverse

Rewrite 4 ln(x) using the power rule for logs to a single logarithm with a leading coefficient of 1.

Solution:

Because the logarithm of a power is the product of the exponent times the logarithm of the base, it follows
that the product of a number and a logarithm can be written as a power. For the expression 4 ln(x),we
identify the factor, 4, as the exponent and the argument,x, as the base, and rewrite the product as a logarithm
of a power: 4 ln(x) = ln(x4).

Note:
Exercise:

Problem: Rewrite 2log34 using the power rule for logs to a single logarithm with a leading coefficient of 1.

Solution:

log316

Expanding Logarithmic Expressions

Taken together, the product rule, quotient rule, and power rule are often called “laws of logs.” Sometimes we apply
more than one rule in order to simplify an expression. For example:
Equation:

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is
an alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:
Equation:

logb(
6x
y
) = logb (6x) − logby

= logb6 + logbx− logby



We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand it mentally, writing the final answer.
Remember, however, that we can only do this with products, quotients, powers, and roots—never with addition or
subtraction inside the argument of the logarithm.

Example:
Exercise:

Problem:
Expanding Logarithms Using Product, Quotient, and Power Rules

Rewrite ln( x4y

7
) as a sum or difference of logs.

Solution:

First, because we have a quotient of two expressions, we can use the quotient rule:
Equation:

ln(
x4y

7
) = ln (x4y)− ln(7)

Then seeing the product in the first term, we use the product rule:
Equation:

ln (x4y)− ln(7) = ln (x4)+ ln(y) − ln(7)

Finally, we use the power rule on the first term:
Equation:

ln (x4)+ ln(y) − ln(7) = 4 ln(x) + ln(y) − ln(7)

Note:
Exercise:

Problem: Expand log( x2y3

z4
).

Solution:

2 logx+ 3 log y− 4 log z

logb (
A
C
) = logb (AC

−1)

= logb (A) + logb (C
−1)

= logbA+ (−1)logbC

= logbA− logbC



Example:
Exercise:

Problem:
Using the Power Rule for Logarithms to Simplify the Logarithm of a Radical Expression

Expand log (√x).

Solution:
Equation:

Note:
Exercise:

Problem: Expand ln( 3√x2).

Solution:

2
3
lnx

Note:
Can we expand ln (x2 + y2)?
No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

Example:
Exercise:

Problem:
Expanding Complex Logarithmic Expressions

Expand log6(
64x3(4x+1)

(2x−1)
).

Solution:

We can expand by applying the Product and Quotient Rules.
Equation:

log (√x) = logx(
1
2 )

= 1
2 logx

log6(
64x3(4x+1)

(2x−1)
) = log664 + log6x

3 + log6(4x+ 1) − log6(2x− 1) Apply the Quotient Rule.

= log62
6 + log6x

3 + log6(4x+ 1) − log6(2x− 1) Simplify by writing  64 as 26.

= 6log62 + 3log6x+ log6(4x+ 1) − log6(2x− 1) Apply the Power Rule.



Note:
Exercise:

Problem: Expand ln(
√(x−1)(2x+1)2

(x2−9)
).

Solution:

1
2
ln (x− 1) + ln (2x+ 1) − ln (x+ 3) − ln (x− 3)

Condensing Logarithmic Expressions

We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base
as a single logarithm. It is important to remember that the logarithms must have the same base to be combined. We
will learn later how to change the base of any logarithm before condensing.

Note:
Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a
single logarithm.

1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite each
as the logarithm of a power.

2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.
3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.

Example:
Exercise:

Problem:
Using the Product and Quotient Rules to Combine Logarithms

Write log3 (5) + log3 (8) − log3 (2) as a single logarithm.

Solution:

Using the product and quotient rules
Equation:

log3 (5) + log3 (8) = log3 (5 ⋅ 8) = log3 (40)

This reduces our original expression to
Equation:

log3(40) − log3(2)

Then, using the quotient rule
Equation:

( )



log3 (40) − log3 (2) = log3(
40

2
) = log3 (20)

Note:
Exercise:

Problem: Condense log 3 − log 4 + log 5 − log 6.

Solution:

log ( 3⋅5
4⋅6 ); can also be written log ( 5

8 ) by reducing the fraction to lowest terms.

Example:
Exercise:

Problem:
Condensing Complex Logarithmic Expressions

Condense log2 (x2)+ 1
2
log2 (x− 1) − 3log2((x+ 3)2).

Solution:

We apply the power rule first:
Equation:

log2 (x
2)+

1

2
log2 (x− 1) − 3log2((x+ 3)2) = log2 (x

2)+ log2(√x− 1)− log2((x+ 3)6)

Next we apply the product rule to the sum:
Equation:

log2 (x
2)+ log2(√x− 1)− log2((x+ 3)6) = log2(x

2√x− 1)− log2((x+ 3)6)

Finally, we apply the quotient rule to the difference:
Equation:

log2(x
2√x− 1)− log2((x+ 3)6) = log2

x2√x− 1

(x+ 3)6

Note:
Exercise:

Problem: Rewrite log (5) + 0.5 log (x) − log (7x− 1) + 3 log (x− 1) as a single logarithm.



Solution:

log( 5(x−1)3√x

(7x−1)
)

Example:
Exercise:

Problem:
Rewriting as a Single Logarithm

Rewrite 2 logx− 4 log(x+ 5) + 1
x
log (3x+ 5) as a single logarithm.

Solution:

We apply the power rule first:
Equation:

log(x+ 5) +
1

x
log(3x+ 5) = log (x2)− log (x+ 5)4 + log((3x+ 5)x

−1

)

Next we rearrange and apply the product rule to the sum:
Equation:

log (x2)− log (x+ 5)4 + log((3x+ 5)x
−1

)

Equation:

= log (x2)+ log((3x+ 5)x
−1

)− log (x+ 5)4

Equation:

= log(x2(3x+ 5)x
−1

)− log (x+ 5)4

Finally, we apply the quotient rule to the difference:
Equation:

= log(x2(3x+ 5)x
−1

)−log(x+ 5)4 = log
x2(3x+ 5)x

−1

(x+ 5)4

Note:
Exercise:

Problem: Condense 4(3 log (x) + log (x+ 5) − log (2x+ 3)).

Solution:



log
x12(x+5)4

(2x+3)4
; this answer could also be written log( x3(x+5)

(2x+3)
)
4
.

Example:
Exercise:

Problem:
Applying of the Laws of Logs

Recall that, in chemistry,pH = − log[H+]. If the concentration of hydrogen ions in a liquid is doubled,
what is the effect on pH?

Solution:

SupposeC is the original concentration of hydrogen ions, andP is the original pH of the liquid. Then
P =– log(C). If the concentration is doubled, the new concentration is 2C. Then the pH of the new liquid is
Equation:

pH = − log (2C)

Using the product rule of logs
Equation:

pH = − log (2C) = − (log(2) + log(C)) = − log(2) − log(C)

SinceP =– log(C),the new pH is
Equation:

pH = P − log(2) ≈ P − 0.301

When the concentration of hydrogen ions is doubled, the pH decreases by about 0.301.

Note:
Exercise:

Problem: How does the pH change when the concentration of positive hydrogen ions is decreased by half?

Solution:

The pH increases by about 0.301.

Using the Change-of-Base Formula for Logarithms

Most calculators can evaluate only common and natural logs. In order to evaluate logarithms with a base other than
10 or e,we use the change-of-base formula to rewrite the logarithm as the quotient of logarithms of any other
base; when using a calculator, we would change them to common or natural logs.

To derive the change-of-base formula, we use the one-to-one property and power rule for logarithms.



Given any positive real numbersM, b, and n, wheren ≠ 1  and b ≠ 1,we show
Equation:

logbM=
lognM

lognb

Let y = logbM. By taking the log basen of both sides of the equation, we arrive at an exponential form, namely
by = M. It follows that
Equation:

For example, to evaluate log536 using a calculator, we must first rewrite the expression as a quotient of common or
natural logs. We will use the common log.
Equation:

Note:
The Change-of-Base Formula
The change-of-base formula can be used to evaluate a logarithm with any base.
For any positive real numbersM, b, andn, wheren ≠ 1  and b ≠ 1,
Equation:

logbM=
lognM

lognb
.

It follows that the change-of-base formula can be used to rewrite a logarithm with any base as the quotient of
common or natural logs.
Equation:

logbM =
lnM

ln b

and
Equation:

logbM =
logM

log b

Note:
Given a logarithm with the form logbM, use the change-of-base formula to rewrite it as a quotient of logs
with any positive basen, wheren ≠ 1.

logn(b
y) = lognM Apply the one-to-one property.

ylognb = lognM   Apply the power rule for logarithms.

y = lognM
lognb

Isolate y.

logbM = lognM
lognb

Substitute for y.

log536 = log(36)
log(5)

Apply the change of base formula using base 10.

≈ 2.2266  Use a calculator to evaluate to 4 decimal places.



1. Determine the new basen, remembering that the common log, log (x), has base 10, and the natural log,
ln (x),has base e.

2. Rewrite the log as a quotient using the change-of-base formula

The numerator of the quotient will be a logarithm with basen and argumentM.
The denominator of the quotient will be a logarithm with basen and argument b.

Example:
Exercise:

Problem:
Changing Logarithmic Expressions to Expressions Involving Only Natural Logs

Change log53 to a quotient of natural logarithms.

Solution:

Because we will be expressing log53 as a quotient of natural logarithms, the new base,n = e.

We rewrite the log as a quotient using the change-of-base formula. The numerator of the quotient will be the
natural log with argument 3. The denominator of the quotient will be the natural log with argument 5.
Equation:

Note:
Exercise:

Problem: Change log0.58 to a quotient of natural logarithms.

Solution:

ln 8
ln 0.5

Note:
Can we change common logarithms to natural logarithms?
Yes. Remember that log 9means log109. So, log 9 = ln 9

ln 10 .

Example:
Exercise:

Problem:
Using the Change-of-Base Formula with a Calculator

Evaluate log2(10) using the change-of-base formula with a calculator.

logbM = lnM
ln b

log53 = ln 3
ln 5



Solution:

According to the change-of-base formula, we can rewrite the log base 2 as a logarithm of any other base.
Since our calculators can evaluate the natural log, we might choose to use the natural logarithm, which is the
log base e.
Equation:

Note:
Exercise:

Problem: Evaluate log5(100) using the change-of-base formula.

Solution:

ln 100
ln 5 ≈ 4.6051

1.6094 = 2.861

Note:
Access these online resources for additional instruction and practice with laws of logarithms.

The Properties of Logarithms
Expand Logarithmic Expressions
Evaluate a Natural Logarithmic Expression

Key Equations

The Product Rule for Logarithms logb(MN) = logb (M) + logb (N)

The Quotient Rule for Logarithms logb (
M
N
) = logbM − logbN

The Power Rule for Logarithms logb (M
n) = nlogbM

The Change-of-Base Formula logbM=
lognM
lognb

         n > 0,n ≠ 1, b ≠ 1

Key Concepts

We can use the product rule of logarithms to rewrite the log of a product as a sum of logarithms. See [link].

log210 = ln 10
ln 2 Apply the change of base formula using base e.

≈ 3.3219 Use a calculator to evaluate to 4 decimal places.

http://openstaxcollege.org/l/proplog
http://openstaxcollege.org/l/expandlog
http://openstaxcollege.org/l/evaluatelog


We can use the quotient rule of logarithms to rewrite the log of a quotient as a difference of logarithms. See
[link].
We can use the power rule for logarithms to rewrite the log of a power as the product of the exponent and the
log of its base. See [link], [link], and [link].
We can use the product rule, the quotient rule, and the power rule together to combine or expand a logarithm
with a complex input. See [link], [link], and [link].
The rules of logarithms can also be used to condense sums, differences, and products with the same base as a
single logarithm. See [link], [link], [link], and [link].
We can convert a logarithm with any base to a quotient of logarithms with any other base using the change-
of-base formula. See [link].
The change-of-base formula is often used to rewrite a logarithm with a base other than 10 and e  as the
quotient of natural or common logs. That way a calculator can be used to evaluate. See [link].

Section Exercises

Verbal

Exercise:

Problem: How does the power rule for logarithms help when solving logarithms with the form logb (
n√x)?

Solution:

Any root expression can be rewritten as an expression with a rational exponent so that the power rule can be
applied, making the logarithm easier to calculate. Thus, logb(x

1
n) = 1

n
logb(x).

Exercise:

Problem: What does the change-of-base formula do? Why is it useful when using a calculator?

Algebraic

For the following exercises, expand each logarithm as much as possible. Rewrite each expression as a sum,
difference, or product of logs.
Exercise:

Problem: logb (7x ⋅ 2y)

Solution:

logb (2) + logb (7) + logb (x) + logb (y)

Exercise:

Problem: ln (3ab ⋅ 5c)

Exercise:

Problem: logb ( 13
17 )

Solution:

logb (13) − logb (17)



Exercise:

Problem: log4(
  x
z
 

w
)

Exercise:

Problem: ln ( 1
4k
)

Solution:

−k ln(4)

Exercise:

Problem: log2 (yx)

For the following exercises, condense to a single logarithm if possible.
Exercise:

Problem: ln (7) + ln (x) + ln (y)

Solution:

ln (7xy)

Exercise:

Problem: log3(2) + log3(a) + log3(11) + log3(b)

Exercise:

Problem: logb(28) − logb(7)

Solution:

logb(4)

Exercise:

Problem: ln (a) − ln (d) − ln (c)

Exercise:

Problem: −logb (
1
7 )

Solution:

logb (7)

Exercise:

Problem: 13 ln (8)

For the following exercises, use the properties of logarithms to expand each logarithm as much as possible.
Rewrite each expression as a sum, difference, or product of logs.



Exercise:

Problem: log( x15y13

z19
)

Solution:

15 log(x) + 13 log(y) − 19 log(z)

Exercise:

Problem: ln( a−2

b−4c5
)

Exercise:

Problem: log(√x3y−4)

Solution:

3
2 log(x) − 2 log(y)

Exercise:

Problem: ln(y√ y

1−y
)

Exercise:

Problem: log(x2y3 3√x2y5)

Solution:

8
3 log(x) +

14
3 log(y)

For the following exercises, condense each expression to a single logarithm using the properties of logarithms.
Exercise:

Problem: log (2x4)+ log (3x5)

Exercise:

Problem: ln(6x9) − ln(3x2)

Solution:

ln(2x7)

Exercise:

Problem: 2 log(x) + 3 log(x+ 1)

Exercise:

Problem: log(x) − 1
2 log(y) + 3 log(z)



Solution:

log( xz3

√y
)

Exercise:

Problem: 4log7 (c) +
log7(a)

3
+

log7(b)
3

For the following exercises, rewrite each expression as an equivalent ratio of logs using the indicated base.
Exercise:

Problem: log7 (15) to base e

Solution:

log7 (15) =
ln(15)
ln(7)

Exercise:

Problem: log14 (55.875) to base 10

For the following exercises, suppose log5 (6) = a and log5 (11) = b. Use the change-of-base formula along with
properties of logarithms to rewrite each expression in terms of a and b. Show the steps for solving.
Exercise:

Problem: log11 (5)

Solution:

log11 (5) =
log5(5)
log5(11)

= 1
b

Exercise:

Problem: log6 (55)

Exercise:

Problem: log11 (
6
11 )

Solution:

log11 (
6
11 ) =

log5(
6
11 )

log5(11)
=

log5(6)−log5(11)
log5(11)

= a−b
b

= a
b
− 1

Numeric

For the following exercises, use properties of logarithms to evaluate without using a calculator.
Exercise:

Problem: log3 ( 1
9 )− 3log3 (3)



Exercise:

Problem: 6log8 (2) +
log8(64)
3log8(4)

Solution:

3

Exercise:

Problem: 2log9 (3) − 4log9 (3) + log9 (
1

729 )

For the following exercises, use the change-of-base formula to evaluate each expression as a quotient of natural
logs. Use a calculator to approximate each to five decimal places.
Exercise:

Problem: log3 (22)

Solution:

2.81359

Exercise:

Problem: log8 (65)

Exercise:

Problem: log6 (5.38)

Solution:

0.93913

Exercise:

Problem: log4 (
15
2 )

Exercise:

Problem: log 1
2
(4.7)

Solution:

−2.23266

Extensions

Exercise:

Problem: 

Use the product rule for logarithms to find allx values such that log12 (2x+ 6) + log12 (x+ 2) = 2. Show
the steps for solving.



Exercise:

Problem: 

Use the quotient rule for logarithms to find allx values such that log6 (x+ 2) − log6 (x− 3) = 1. Show the
steps for solving.

Solution:

x = 4; By the quotient rule:log6 (x+ 2) − log6 (x− 3) = log6 (
x+2
x−3

) = 1.

Rewriting as an exponential equation and solving forx :

Checking, we find that log6 (4 + 2) − log6 (4 − 3) = log6 (6) − log6 (1) is defined, sox = 4.

Exercise:

Problem: 

Can the power property of logarithms be derived from the power property of exponents using the equation
bx = m? If not, explain why. If so, show the derivation.

Exercise:

Problem: Prove that logb (n) =
1

logn(b)
for any positive integers b > 1 andn > 1.

Solution:

Let b andn be positive integers greater than 1.Then, by the change-of-base formula,
logb (n) =

logn(n)
logn(b)

= 1
logn(b)

.

Exercise:

Problem: Does log81 (2401) = log3 (7)?Verify the claim algebraically.

Glossary

change-of-base formula
a formula for converting a logarithm with any base to a quotient of logarithms with any other base.

power rule for logarithms
a rule of logarithms that states that the log of a power is equal to the product of the exponent and the log of its
base

product rule for logarithms
a rule of logarithms that states that the log of a product is equal to a sum of logarithms

61 = x+2
x−3

0 = x+2
x−3 − 6

0 = x+2
x−3 −

6(x−3)
(x−3)

0 = x+2−6x+18
x−3

0 = x−4
x−3

x = 4



quotient rule for logarithms
a rule of logarithms that states that the log of a quotient is equal to a difference of logarithms



Exponential and Logarithmic Equations
In this section, you will:

Use like bases to solve exponential equations.
Use logarithms to solve exponential equations.
Use the definition of a logarithm to solve logarithmic equations.
Use the one-to-one property of logarithms to solve logarithmic equations.
Solve applied problems involving exponential and logarithmic equations.

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because
Australia had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit
population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions.
Equations resulting from those exponential functions can be solved to analyze and make predictions about
exponential growth. In this section, we will learn techniques for solving exponential functions.

Using Like Bases to Solve Exponential Equations

The first technique involves two functions with like bases. Recall that the one-to-one property of exponential
functions tells us that, for any real numbers b, S, and T , where b > 0,  b ≠ 1,bS = bT if and only if S = T .

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This
also applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by
using the rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that
exponential functions are one-to-one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation 34x−7 = 32x

3 . To solve for x, we use the division property of exponents to
rewrite the right side so that both sides have the common base, 3.Then we apply the one-to-one property of
exponents by setting the exponents equal to one another and solving for x :
Equation:

Wild rabbits in Australia. The rabbit population grew
so quickly in Australia that the event became known as

the “rabbit plague.” (credit: Richard Taylor, Flickr)



Note:
Using the One-to-One Property of Exponential Functions to Solve Exponential Equations
For any algebraic expressions S and T , and any positive real number b ≠ 1,
Equation:

bS = bT if and only if S = T

Note:
Given an exponential equation with the form bS = bT , where S  and T  are algebraic expressions with an
unknown, solve for the unknown.

1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form bS = bT .
2. Use the one-to-one property to set the exponents equal.
3. Solve the resulting equation, S = T , for the unknown.

Example:
Exercise:

Problem:
Solving an Exponential Equation with a Common Base

Solve 2x−1 = 22x−4.

Solution:
Equation:

Note:
Exercise:

Problem: Solve 52x = 53x+2.

Solution:

34x−7 = 32x

3

34x−7 = 32x

31
Rewrite 3 as 31.

34x−7 = 32x−1 Use the division property of exponents.

4x − 7 = 2x − 1   Apply the one-to-one property of exponents.

2x = 6 Subtract 2x and add 7 to both sides.

x = 3 Divide by 3.

 2x−1 = 22x−4 The common base is  2.

    x − 1 = 2x − 4 By the one-to-one property the exponents must be equal.

          x = 3 Solve for x.



x = −2

Rewriting Equations So All Powers Have the Same Base

Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite
the terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation 256 = 4x−5. We can rewrite both sides of this equation as a power of 2.Then
we apply the rules of exponents, along with the one-to-one property, to solve for x :
Equation:

Note:
Given an exponential equation with unlike bases, use the one-to-one property to solve it.

1. Rewrite each side in the equation as a power with a common base.
2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form bS = bT .
3. Use the one-to-one property to set the exponents equal.
4. Solve the resulting equation, S = T , for the unknown.

Example:
Exercise:

Problem:
Solving Equations by Rewriting Them to Have a Common Base

Solve 8x+2 = 16x+1.

Solution:
Equation:

256 = 4x−5

28 = (22)
x−5

Rewrite each side as a power with base 2.

28 = 22x−10 Use the one-to-one property of exponents.

8 = 2x − 10 Apply the one-to-one property of exponents.

18 = 2x Add 10 to both sides.

x = 9 Divide by 2.

    8x+2 = 16x+1

(23)
x+2

= (24)
x+1

Write  8 and 16 as powers of  2.

   23x+6 = 24x+4 To take a power of a power, multiply exponents.

   3x + 6 = 4x + 4 Use the one-to-one property to set the exponents equal.

           x = 2 Solve for x.



Note:
Exercise:

Problem: Solve 52x = 253x+2.

Solution:

x = −1

Example:
Exercise:

Problem:
Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base

Solve 25x = √2.

Solution:
Equation:

Note:
Exercise:

Problem: Solve 5x = √5.

Solution:

x = 1
2

Note:
Do all exponential equations have a solution? If not, how can we tell if there is a solution during the
problem-solving process?
No. Recall that the range of an exponential function is always positive. While solving the equation, we may obtain
an expression that is undefined.

Example:
Exercise:

Problem:
Solving an Equation with Positive and Negative Powers

Solve 3x+1 = −2.

25x = 2
1
2 Write the square root of  2 as a power of  2.

5x = 1
2 Use the one-to-one property.

x = 1
10 Solve for x.



Solution:

This equation has no solution. There is no real value of x that will make the equation a true statement
because any power of a positive number is positive.

Analysis

[link] shows that the two graphs do not cross so the left side is never equal to the right side. Thus the equation has
no solution.

Note:
Exercise:

Problem: Solve 2x = −100.

Solution:

The equation has no solution.

Solving Exponential Equations Using Logarithms

Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve
by taking the logarithm of each side. Recall, since log (a) = log (b) is equivalent to a = b, we may apply
logarithms with the same base on both sides of an exponential equation.

Note:
Given an exponential equation in which a common base cannot be found, solve for the unknown.

1. Apply the logarithm of both sides of the equation.

If one of the terms in the equation has base 10, use the common logarithm.



If none of the terms in the equation has base 10, use the natural logarithm.

2. Use the rules of logarithms to solve for the unknown.

Example:
Exercise:

Problem:
Solving an Equation Containing Powers of Different Bases

Solve 5x+2 = 4x.

Solution:
Equation:

Note:
Exercise:

Problem: Solve 2x = 3x+1.

Solution:

x = ln 3

ln(2/3)

Note:
Is there any way to solve 2x = 3x?
Yes. The solution is 0.

Equations Containing e

One common type of exponential equations are those with base e. This constant occurs again and again in nature,
in mathematics, in science, in engineering, and in finance. When we have an equation with a base e on either side,
we can use the natural logarithm to solve it.

           5x+2 = 4x There is no easy way to get the powers to have the same base.

         ln 5x+2 = ln 4x Take ln of both sides.

     (x + 2) ln 5 = x ln 4 Use laws of logs.

  x ln 5 + 2 ln 5 = x ln 4 Use the distributive law.

  x ln 5 − x ln 4 = −2 ln 5 Get terms containing x on one side, terms without x on the other.

x(ln 5 − ln 4) = −2 ln 5 On the left hand side, factor out an x.

          x ln ( 5
4 ) = ln ( 1

25 ) Use the laws of logs.

                  x =
ln( 1

25 )

ln( 5
4 )

Divide by the coefficient of x.



Note:
Given an equation of the form y = Aekt, solve for t.

1. Divide both sides of the equation by A.
2. Apply the natural logarithm of both sides of the equation.
3. Divide both sides of the equation by k.

Example:
Exercise:

Problem:
Solve an Equation of the Form y = Ae

Solve 100 = 20e2t.

Solution:
Equation:

Analysis

Using laws of logs, we can also write this answer in the form t = ln√5.If we want a decimal approximation of
the answer, we use a calculator.

Note:
Exercise:

Problem: Solve 3e0.5t = 11.

Solution:

t = 2 ln ( 11
3 ) or ln ( 11

3 )
2

Note:
Does every equation of the form y = Aekt have a solution?
No. There is a solution when k ≠ 0,and when y and A are either both 0 or neither 0, and they have the same sign.
An example of an equation with this form that has no solution is 2 = −3et.

Example:
Exercise:

Problem:

kt

100 = 20e2t

5 = e2t Divide by the coefficient of the power.

ln 5 = 2t Take ln of both sides. Use the fact that  ln(x) and ex are inverse functions.

t = ln 5
2 Divide by the coefficient of t.



Solving an Equation That Can Be Simplified to the Form y = Ae

Solve 4e2x + 5 = 12.

Solution:
Equation:

Note:
Exercise:

Problem: Solve 3 + e2t = 7e2t.

Solution:

t = ln( 1
√2

) = − 1
2 ln (2)

Extraneous Solutions

Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is
correct algebraically but does not satisfy the conditions of the original equation. One such situation arises in
solving when the logarithm is taken on both sides of the equation. In such cases, remember that the argument of
the logarithm must be positive. If the number we are evaluating in a logarithm function is negative, there is no
output.

Example:
Exercise:

Problem:
Solving Exponential Functions in Quadratic Form

Solve e2x − ex = 56.

Solution:
Equation:

kt

4e2x + 5 = 12

4e2x = 7 Combine like terms.

e2x = 7
4 Divide by the coefficient of the power.

2x = ln ( 7
4
) Take ln of both sides.

x = 1
2
ln ( 7

4
) Solve for x.



Analysis

When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because zero
has the unique property that when a product is zero, one or both of the factors must be zero. We reject the
equation ex = −7 because a positive number never equals a negative number. The solution ln(−7) is not a real
number, and in the real number system this solution is rejected as an extraneous solution.

Note:
Exercise:

Problem: Solve e2x = ex + 2.

Solution:

x = ln 2

Note:
Does every logarithmic equation have a solution?
No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous
solutions.

Using the Definition of a Logarithm to Solve Logarithmic Equations

We have already seen that every logarithmic equation logb (x) = y is equivalent to the exponential equation
by = x. We can use this fact, along with the rules of logarithms, to solve logarithmic equations where the
argument is an algebraic expression.

For example, consider the equation log2 (2) + log2 (3x − 5) = 3.To solve this equation, we can use rules of
logarithms to rewrite the left side in compact form and then apply the definition of logs to solve for x :
Equation:

e2x − ex = 56

e2x − ex − 56 = 0 Get one side of the equation equal to zero.

(ex + 7)(ex − 8) = 0 Factor by the FOIL method.

ex + 7 = 0 or ex − 8 = 0 If a product is zero, then one factor must be zero.

ex = −7 or ex = 8 Isolate the exponentials.

ex = 8 Reject the equation in which the power equals a negative n

x = ln 8 Solve the equation in which the power equals a positive num

log2(2) + log2(3x − 5) = 3

            log2(2(3x − 5)) = 3 Apply the product rule of logarithms.

              log2(6x − 10) = 3 Distribute.

                                23 = 6x − 10 Apply the definition of a logarithm.

                                  8 = 6x − 10 Calculate 23.

                                18 = 6x Add 10 to both sides.

                                 x = 3 Divide by 6.



Note:
Using the Definition of a Logarithm to Solve Logarithmic Equations
For any algebraic expression S and real numbers b and c,where b > 0,  b ≠ 1,
Equation:

logb(S) = c if and only if bc = S

Example:
Exercise:

Problem:
Using Algebra to Solve a Logarithmic Equation

Solve 2 lnx + 3 = 7.

Solution:
Equation:

Note:
Exercise:

Problem: Solve 6 + lnx = 10.

Solution:

x = e4

Example:
Exercise:

Problem:
Using Algebra Before and After Using the Definition of the Natural Logarithm

Solve 2 ln(6x) = 7.

Solution:
Equation:

2 lnx + 3 = 7

      2 lnx = 4 Subtract 3.

        lnx = 2 Divide by 2.

           x = e2 Rewrite in exponential form.



Note:
Exercise:

Problem: Solve 2 ln(x + 1) = 10.

Solution:

x = e5 − 1

Example:
Exercise:

Problem:
Using a Graph to Understand the Solution to a Logarithmic Equation

Solve lnx = 3.

Solution:
Equation:

[link] represents the graph of the equation. On the graph, the x-coordinate of the point at which the two
graphs intersect is close to 20. In other words e3 ≈ 20.A calculator gives a better approximation:
e3 ≈ 20.0855.

2 ln(6x) = 7

   ln(6x) = 7
2 Divide by 2.

        6x = e( 7
2 ) Use the definition of  ln.

          x = 1
6 e( 7

2 ) Divide by 6.

lnx = 3

x = e3 Use the definition of the natural logarithm.

The graphs of y = lnx and y = 3 cross at the point
(e3, 3),which is approximately (20.0855, 3).



Note:
Exercise:

Problem: 

Use a graphing calculator to estimate the approximate solution to the logarithmic equation 2x = 1000 to 2
decimal places.

Solution:

x ≈ 9.97

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one
property of logarithmic functions tells us that, for any real numbers x > 0, S > 0, T > 0 and any positive real
number b, where b ≠ 1,
Equation:

logbS = logbT  if and only if S = T .

For example,
Equation:

If  log2(x − 1) = log2(8), then x − 1 = 8.

So, if x − 1 = 8,then we can solve for x,and we get x = 9.To check, we can substitute x = 9 into the original
equation: log2 (9 − 1) = log2 (8) = 3. In other words, when a logarithmic equation has the same base on each
side, the arguments must be equal. This also applies when the arguments are algebraic expressions. Therefore,
when given an equation with logs of the same base on each side, we can use rules of logarithms to rewrite each
side as a single logarithm. Then we use the fact that logarithmic functions are one-to-one to set the arguments
equal to one another and solve for the unknown.

For example, consider the equation log (3x − 2) − log (2) = log (x + 4). To solve this equation, we can use the
rules of logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for
x :
Equation:

To check the result, substitute x = 10 into log (3x − 2) − log (2) = log (x + 4).
Equation:

log(3x − 2) − log(2) = log(x + 4)

             log ( 3x−2
2

) = log(x + 4) Apply the quotient rule of logarithms.

                     3x−2
2

= x + 4 Apply the one to one property of a logarithm.

                     3x − 2 = 2x + 8 Multiply both sides of the equation by 2.

                              x = 10 Subtract 2x and add 2.



Note:
Using the One-to-One Property of Logarithms to Solve Logarithmic Equations
For any algebraic expressions S and T and any positive real number b, where b ≠ 1,
Equation:

logbS = logbT if and only if S = T

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an
extraneous solution.

Note:
Given an equation containing logarithms, solve it using the one-to-one property.

1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form
logbS = logbT .

2. Use the one-to-one property to set the arguments equal.
3. Solve the resulting equation, S = T , for the unknown.

Example:
Exercise:

Problem:
Solving an Equation Using the One-to-One Property of Logarithms

Solve ln(x2) = ln(2x + 3).

Solution:
Equation:

Analysis

There are two solutions: 3  or −1.The solution −1 is negative, but it checks when substituted into the original
equation because the argument of the logarithm functions is still positive.

Note:

log(3(10) − 2) − log(2) = log((10) + 4)

           log(28) − log(2) = log(14)

                        log ( 28
2 ) = log(14) The solution checks.

           ln(x2) = ln(2x + 3)

                  x2 = 2x + 3 Use the one-to-one property of the logarithm.

     x2 − 2x − 3 = 0 Get zero on one side before factoring.

(x − 3)(x + 1) = 0 Factor using FOIL.

               x − 3 = 0 or x + 1 = 0 If a product is zero, one of the factors must be zero.

                    x = 3 or x = −1 Solve for x.



Exercise:

Problem: Solve ln(x2) = ln 1.

Solution:

x = 1 or x = −1

Solving Applied Problems Using Exponential and Logarithmic Equations

In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have
seen that any exponential function can be written as a logarithmic function and vice versa. We have used
exponents to solve logarithmic equations and logarithms to solve exponential equations. We are now ready to
combine our skills to solve equations that model real-world situations, whether the unknown is in an exponent or
in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a
radioactive substance to decay, called its half-life. [link] lists the half-life for several of the more common
radioactive substances.

Substance Use Half-life

gallium-67 nuclear medicine 80 hours

cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours

americium-241 construction 432 years

carbon-14 archeological dating 5,715 years

uranium-235 atomic power 703,800,000 years

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to
calculate the amount remaining after a specified time. We can use the formula for radioactive decay:
Equation:

where

A0 is the amount initially present

A(t) = A0e
ln(0.5)

T
t

A(t) = A0eln(0.5) t
T

A(t) = A0(e
ln(0.5))

t
T

A(t) = A0( 1
2 )

t
T



T is the half-life of the substance
t is the time period over which the substance is studied
y is the amount of the substance present after time t

Example:
Exercise:

Problem:
Using the Formula for Radioactive Decay to Find the Quantity of a Substance

How long will it take for ten percent of a 1000-gram sample of uranium-235 to decay?

Solution:
Equation:

Analysis

Ten percent of 1000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is 900 grams.

Note:
Exercise:

Problem: 

How long will it take before twenty percent of our 1000-gram sample of uranium-235 has decayed?

Solution:

t = 703, 800, 000 ×
ln(0.8)
ln(0.5)

 years  ≈  226, 572, 993 years.

Note:
Access these online resources for additional instruction and practice with exponential and logarithmic equations.

Solving Logarithmic Equations
Solving Exponential Equations with Logarithms

         y = 1000e
ln(0.5)

703,800,000 t

     900 = 1000e
ln(0.5)

703,800,000 t After 10% decays, 900 grams are left.

      0.9 = e
ln(0.5)

703,800,000 t Divide by 1000.

ln(0.9) = ln(e
ln(0.5)

703,800,000 t) Take ln of both sides.

ln(0.9) =
ln(0.5)

703,800,000 t ln(eM) = M

          t = 703,800,000 ×
ln(0.9)
ln(0.5)

years Solve for t.

          t ≈ 106,979,777 years

http://openstaxcollege.org/l/solvelogeq
http://openstaxcollege.org/l/solveexplog


Key Equations

One-to-one property for exponential
functions

For any algebraic expressions S and T  and any positive real
number b,  where 
bS = bT  if and only if S = T .

Definition of a logarithm
For any algebraic expression S and positive real numbers b  and c,  
where b ≠ 1, 
logb(S) = c if and only if bc = S.

One-to-one property for logarithmic
functions

For any algebraic expressions S and T and any positive real number
 b,  where b ≠ 1, 
logbS = logbT  if and only if S = T .

Key Concepts

We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with
the same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to
one another and solve for the unknown.
When we are given an exponential equation where the bases are explicitly shown as being equal, set the
exponents equal to one another and solve for the unknown. See [link].
When we are given an exponential equation where the bases are not explicitly shown as being equal, rewrite
each side of the equation as powers of the same base, then set the exponents equal to one another and solve
for the unknown. See [link], [link], and [link].
When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each
side. See [link].
We can solve exponential equations with base e,by applying the natural logarithm of both sides because
exponential and logarithmic functions are inverses of each other. See [link] and [link].
After solving an exponential equation, check each solution in the original equation to find and eliminate any
extraneous solutions. See [link].
When given an equation of the form logb(S) = c,where S is an algebraic expression, we can use the
definition of a logarithm to rewrite the equation as the equivalent exponential equation bc = S, and solve for
the unknown. See [link] and [link].
We can also use graphing to solve equations with the form logb(S) = c. We graph both equations
y = logb(S) and y = c on the same coordinate plane and identify the solution as the x-value of the
intersecting point. See [link].
When given an equation of the form logbS = logbT ,where S and T are algebraic expressions, we can use the
one-to-one property of logarithms to solve the equation S = T for the unknown. See [link].
Combining the skills learned in this and previous sections, we can solve equations that model real world
situations, whether the unknown is in an exponent or in the argument of a logarithm. See [link].

Section Exercises

Verbal

Exercise:

Problem: How can an exponential equation be solved?



Solution:

Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can
be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply
the logarithm to each side and use properties of logarithms to solve.

Exercise:

Problem: When does an extraneous solution occur? How can an extraneous solution be recognized?

Exercise:

Problem: 

When can the one-to-one property of logarithms be used to solve an equation? When can it not be used?

Solution:

The one-to-one property can be used if both sides of the equation can be rewritten as a single logarithm with
the same base. If so, the arguments can be set equal to each other, and the resulting equation can be solved
algebraically. The one-to-one property cannot be used when each side of the equation cannot be rewritten as a
single logarithm with the same base.

Algebraic

For the following exercises, use like bases to solve the exponential equation.
Exercise:

Problem: 4−3v−2 = 4−v

Exercise:

Problem: 64 ⋅ 43x = 16

Solution:

x = − 1
3

Exercise:

Problem: 32x+1 ⋅ 3x = 243

Exercise:

Problem: 2−3n ⋅ 1
4 = 2n+2

Solution:

n = −1

Exercise:

Problem: 625 ⋅ 53x+3 = 125

Exercise:



Problem: 36
3b

362b = 2162−b

Solution:

b = 6
5

Exercise:

Problem: ( 1
64 )

3n
⋅ 8 = 26

For the following exercises, use logarithms to solve.
Exercise:

Problem: 9x−10 = 1

Solution:

x = 10

Exercise:

Problem: 2e6x = 13

Exercise:

Problem: er+10 − 10 = −42

Solution:

No solution

Exercise:

Problem: 2 ⋅ 109a = 29

Exercise:

Problem: −8 ⋅ 10p+7 − 7 = −24

Solution:

p = log ( 17
8 ) − 7

Exercise:

Problem: 7e3n−5 + 5 = −89

Exercise:

Problem: e−3k + 6 = 44

Solution:

k = −
ln(38)

3



Exercise:

Problem: −5e9x−8 − 8 = −62

Exercise:

Problem: −6e9x+8 + 2 = −74

Solution:

x =
ln( 38

3 )−8

9

Exercise:

Problem: 2x+1 = 52x−1

Exercise:

Problem: e2x − ex − 132 = 0

Solution:

x = ln 12 

Exercise:

Problem: 7e8x+8 − 5 = −95

Exercise:

Problem: 10e8x+3 + 2 = 8

Solution:

x =
ln( 3

5
)−3

8

Exercise:

Problem: 4e3x+3 − 7 = 53

Exercise:

Problem: 8e−5x−2 − 4 = −90

Solution:

no solution

Exercise:

Problem: 32x+1 = 7x−2

Exercise:

Problem: e2x − ex − 6 = 0

Solution:



x = ln (3)

Exercise:

Problem: 3e3−3x + 6 = −31

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation.
Exercise:

Problem: log ( 1
100 ) = −2

Solution:

10−2 = 1
100

Exercise:

Problem: log324 (18) = 1
2

For the following exercises, use the definition of a logarithm to solve the equation.
Exercise:

Problem: 5log7n = 10

Solution:

n = 49

Exercise:

Problem: −8log9x = 16

Exercise:

Problem: 4 + log2 (9k) = 2

Solution:

k = 1
36

Exercise:

Problem: 2 log (8n + 4) + 6 = 10

Exercise:

Problem: 10 − 4 ln (9 − 8x) = 6

Solution:

x = 9−e
8

For the following exercises, use the one-to-one property of logarithms to solve.
Exercise:



Problem: ln (10 − 3x) = ln (−4x)

Exercise:

Problem: log13 (5n − 2) = log13 (8 − 5n)

Solution:

n = 1

Exercise:

Problem: log (x + 3) − log (x) = log (74)

Exercise:

Problem: ln (−3x) = ln (x2 − 6x)

Solution:

No solution

Exercise:

Problem: log4 (6 − m) = log43m

Exercise:

Problem: ln (x − 2) − ln (x) = ln (54)

Solution:

No solution

Exercise:

Problem: log9 (2n2 − 14n) = log9 (−45 + n2)

Exercise:

Problem: ln (x2 − 10) + ln (9) = ln (10)

Solution:

x = ± 10
3

For the following exercises, solve each equation for x.
Exercise:

Problem: log(x + 12) = log(x) + log(12)

Exercise:

Problem: ln(x) + ln(x − 3) = ln(7x)



Solution:

x = 10

Exercise:

Problem: log2(7x + 6) = 3

Exercise:

Problem: ln (7) + ln (2 − 4x2) = ln (14)

Solution:

x = 0

Exercise:

Problem: log8 (x + 6) − log8 (x) = log8 (58)

Exercise:

Problem: ln (3) − ln (3 − 3x) = ln (4)

Solution:

x = 3
4

Exercise:

Problem: log3 (3x) − log3 (6) = log3 (77)

Graphical

For the following exercises, solve the equation for x,if there is a solution. Then graph both sides of the equation,
and observe the point of intersection (if it exists) to verify the solution.
Exercise:

Problem: log9 (x) − 5 = −4

Solution:

x = 9



Exercise:

Problem: log3 (x) + 3 = 2

Exercise:

Problem: ln (3x) = 2

Solution:

x = e2

3 ≈ 2.5

Exercise:

Problem: ln (x − 5) = 1

Exercise:

Problem: log (4) + log (−5x) = 2

Solution:

x = −5



Exercise:

Problem: −7 + log3 (4 − x) = −6

Exercise:

Problem: ln (4x − 10) − 6 = −5

Solution:

x = e+10
4 ≈ 3.2

Exercise:

Problem: log (4 − 2x) = log (−4x)

Exercise:

Problem: log11 (−2x2 − 7x) = log11 (x − 2)

Solution:

No solution



Exercise:

Problem: ln (2x + 9) = ln (−5x)

Exercise:

Problem: log9 (3 − x) = log9 (4x − 8)

Solution:

x = 11
5 ≈ 2.2

Exercise:

Problem: log (x2 + 13) = log (7x + 3)

Exercise:

Problem: 3
log2(10)

− log (x − 9) = log (44)

Solution:

x = 101
11

≈ 9.2



Exercise:

Problem: ln (x) − ln (x + 3) = ln (6)

For the following exercises, solve for the indicated value, and graph the situation showing the solution point.
Exercise:

Problem: 

An account with an initial deposit of $6,500 earns 7.25% annual interest, compounded continuously. How
much will the account be worth after 20 years?

Solution:

about $27, 710.24

Exercise:

Problem: 

The formula for measuring sound intensity in decibels D is defined by the equation D = 10 log( I
I0
),where

I is the intensity of the sound in watts per square meter and I0 = 10−12 is the lowest level of sound that the
average person can hear. How many decibels are emitted from a jet plane with a sound intensity of 8.3 ⋅ 102

watts per square meter?

Exercise:



Problem: 

The population of a small town is modeled by the equation P = 1650e0.5t where t is measured in years. In
approximately how many years will the town’s population reach 20,000?

Solution:

about 5 years

Technology

For the following exercises, solve each equation by rewriting the exponential expression using the indicated
logarithm. Then use a calculator to approximate the variable to 3 decimal places.
Exercise:

Problem: 1000(1.03)t = 5000 using the common log.

Exercise:

Problem: e5x = 17 using the natural log

Solution:

ln(17)
5 ≈ 0.567

Exercise:

Problem: 3(1.04)3t = 8 using the common log

Exercise:

Problem: 34x−5 = 38 using the common log

Solution:

x =
log(38)+5 log(3)   

4 log(3)
≈ 2.078

Exercise:

Problem: 50e−0.12t = 10 using the natural log



For the following exercises, use a calculator to solve the equation. Unless indicated otherwise, round all answers to
the nearest ten-thousandth.
Exercise:

Problem: 7e3x−5 + 7.9 = 47

Solution:

x ≈ 2.2401

Exercise:

Problem: ln (3) + ln (4.4x + 6.8) = 2

Exercise:

Problem: log (−0.7x − 9) = 1 + 5 log (5)

Solution:

x ≈ −44655. 7143

Exercise:

Problem: 

Atmospheric pressure P in pounds per square inch is represented by the formula P = 14.7e−0.21x, where x is
the number of miles above sea level. To the nearest foot, how high is the peak of a mountain with an
atmospheric pressure of 8.369 pounds per square inch? (Hint: there are 5280 feet in a mile)

Exercise:

Problem: 

The magnitude M of an earthquake is represented by the equation M = 2
3 log(

E
E0

)where E is the amount of

energy released by the earthquake in joules and E0 = 104.4 is the assigned minimal measure released by an
earthquake. To the nearest hundredth, what would the magnitude be of an earthquake releasing 1.4 ⋅ 1013

joules of energy?

Solution:

about 5.83

Extensions

Exercise:

Problem: 

Use the definition of a logarithm along with the one-to-one property of logarithms to prove that blogbx = x.

Exercise:

Problem: 

Recall the formula for continually compounding interest, y = Aekt. Use the definition of a logarithm along
with properties of logarithms to solve the formula for time t such that t is equal to a single logarithm.



Solution:

t = ln(( y

A
)

1
k )

Exercise:

Problem: 

Recall the compound interest formula A = a(1 + r
k
)

kt
. Use the definition of a logarithm along with

properties of logarithms to solve the formula for time t.

Exercise:

Problem: 

Newton’s Law of Cooling states that the temperature T of an object at any time t can be described by the
equation T = Ts + (T0 − Ts)e−kt, where Ts is the temperature of the surrounding environment, T0 is the
initial temperature of the object, and kis the cooling rate. Use the definition of a logarithm along with
properties of logarithms to solve the formula for time t such that t is equal to a single logarithm.

Solution:

t = ln(( T−Ts

T0−Ts
)
− 1

k

)

Glossary

extraneous solution
a solution introduced while solving an equation that does not satisfy the conditions of the original equation



Exponential and Logarithmic Models
In this section, you will:

Model exponential growth and decay.
Use Newton’s Law of Cooling.
Use logistic-growth models.
Choose an appropriate model for data.
Express an exponential model in base e.

We have already explored some basic applications of exponential and logarithmic functions. In this section, we
explore some important applications in more depth, including radioactive isotopes and Newton’s Law of Cooling.

Modeling Exponential Growth and Decay

In real-world applications, we need to model the behavior of a function. In mathematical modeling, we choose a
familiar general function with properties that suggest that it will model the real-world phenomenon we wish to
analyze. In the case of rapid growth, we may choose the exponential growth function:
Equation:

y = A0e
kt

where A0 is equal to the value at time zero, e is Euler’s constant, and k is a positive constant that determines the
rate (percentage) of growth. We may use the exponential growth function in applications involving doubling time,
the time it takes for a quantity to double. Such phenomena as wildlife populations, financial investments,
biological samples, and natural resources may exhibit growth based on a doubling time. In some applications,
however, as we will see when we discuss the logistic equation, the logistic model sometimes fits the data better
than the exponential model.

A nuclear research reactor inside
the Neely Nuclear Research Center

on the Georgia Institute of
Technology campus (credit:

Georgia Tech Research Institute)



On the other hand, if a quantity is falling rapidly toward zero, without ever reaching zero, then we should probably
choose the exponential decay model. Again, we have the form y = A0e

kt where A0 is the starting value, and e is
Euler’s constant. Now k is a negative constant that determines the rate of decay. We may use the exponential decay
model when we are calculating half-life, or the time it takes for a substance to exponentially decay to half of its
original quantity. We use half-life in applications involving radioactive isotopes.

In our choice of a function to serve as a mathematical model, we often use data points gathered by careful
observation and measurement to construct points on a graph and hope we can recognize the shape of the graph.
Exponential growth and decay graphs have a distinctive shape, as we can see in [link] and [link]. It is important to
remember that, although parts of each of the two graphs seem to lie on the x-axis, they are really a tiny distance
above the x-axis.

A graph showing exponential growth. The equation is 
y = 2e3x.

A graph showing exponential decay The equation is



Exponential growth and decay often involve very large or very small numbers. To describe these numbers, we
often use orders of magnitude. The order of magnitude is the power of ten, when the number is expressed in
scientific notation, with one digit to the left of the decimal. For example, the distance to the nearest star, Proxima
Centauri, measured in kilometers, is 40,113,497,200,000 kilometers. Expressed in scientific notation, this is 
4.01134972 × 1013. So, we could describe this number as having order of magnitude 1013.

Note:
Characteristics of the Exponential Function, y = A e
An exponential function with the form y = A0e

kt has the following characteristics:

one-to-one function
horizontal asymptote: y = 0
domain: (–∞,  ∞)
range: (0,∞)
x intercept: none
y-intercept: (0,A0)
increasing if k > 0 (see [link])
decreasing if k < 0 (see [link])

Example:
Exercise:

Problem:
Graphing Exponential Growth

A population of bacteria doubles every hour. If the culture started with 10 bacteria, graph the population as a
function of time.

A graph showing exponential decay. The equation is 
y = 3e−2x.

0
kt

An exponential function models exponential growth when k > 0 and exponential
decay when k < 0.



Solution:

When an amount grows at a fixed percent per unit time, the growth is exponential. To find A0 we use the fact
that A0 is the amount at time zero, so A0 = 10. To find k, use the fact that after one hour (t = 1) the
population doubles from 10 to 20. The formula is derived as follows
Equation:

so k = ln(2). Thus the equation we want to graph is y = 10e(ln 2)t = 10(eln 2)
t
= 10 ⋅ 2t. The graph is

shown in [link].

Analysis

The population of bacteria after ten hours is 10,240. We could describe this amount is being of the order of
magnitude 104. The population of bacteria after twenty hours is 10,485,760 which is of the order of magnitude 
107, so we could say that the population has increased by three orders of magnitude in ten hours.

Half-Life

We now turn to exponential decay. One of the common terms associated with exponential decay, as stated above,
is half-life, the length of time it takes an exponentially decaying quantity to decrease to half its original amount.
Every radioactive isotope has a half-life, and the process describing the exponential decay of an isotope is called
radioactive decay.

To find the half-life of a function describing exponential decay, solve the following equation:
Equation:

 20 = 10ek⋅1

   2 = ek Divide by 10

ln 2 = k Take the natural logarithm

The graph of y = 10e(ln 2)t



1

2
A0 = Aoe

kt

We find that the half-life depends only on the constant k and not on the starting quantity A0.

The formula is derived as follows
Equation:

Since t, the time, is positive, k must, as expected, be negative. This gives us the half-life formula
Equation:

t = −
ln(2)

k

Note:
Given the half-life, find the decay rate.

1. Write A = Aoe
kt.

2. Replace A by 12 A0 and replace t by the given half-life.
3. Solve to find k. Express k as an exact value (do not round).

Note: It is also possible to find the decay rate using k = −
ln(2)

t
.

Example:
Exercise:

Problem:
Finding the Function that Describes Radioactive Decay

The half-life of carbon-14 is 5,730 years. Express the amount of carbon-14 remaining as a function of time, 
t.

Solution:

This formula is derived as follows.
Equation:

1
2 A0 = Aoe

kt

1
2 = ekt Divide by A0.

ln ( 1
2 ) = kt Take the natural log.

− ln(2) = kt Apply laws of logarithms.

−
ln(2)

k
= t Divide by k.



The function that describes this continuous decay is f(t) = A0e
( ln(0.5)

5730 )t
. We observe that the coefficient of t,

ln(0.5)
5730 ≈ −1.2097 × 10−4 is negative, as expected in the case of exponential decay.

Note:
Exercise:

Problem:

The half-life of plutonium-244 is 80,000,000 years. Find function gives the amount of carbon-14 remaining
as a function of time, measured in years.

Solution:

f(t) = A0e
−0.0000000087t

Radiocarbon Dating

The formula for radioactive decay is important in radiocarbon dating, which is used to calculate the approximate
date a plant or animal died. Radiocarbon dating was discovered in 1949 by Willard Libby, who won a Nobel Prize
for his discovery. It compares the difference between the ratio of two isotopes of carbon in an organic artifact or
fossil to the ratio of those two isotopes in the air. It is believed to be accurate to within about 1% error for plants or
animals that died within the last 60,000 years.

Carbon-14 is a radioactive isotope of carbon that has a half-life of 5,730 years. It occurs in small quantities in the
carbon dioxide in the air we breathe. Most of the carbon on Earth is carbon-12, which has an atomic weight of 12
and is not radioactive. Scientists have determined the ratio of carbon-14 to carbon-12 in the air for the last 60,000
years, using tree rings and other organic samples of known dates—although the ratio has changed slightly over the
centuries.

As long as a plant or animal is alive, the ratio of the two isotopes of carbon in its body is close to the ratio in the
atmosphere. When it dies, the carbon-14 in its body decays and is not replaced. By comparing the ratio of carbon-
14 to carbon-12 in a decaying sample to the known ratio in the atmosphere, the date the plant or animal died can be
approximated.

Since the half-life of carbon-14 is 5,730 years, the formula for the amount of carbon-14 remaining after t years is
Equation:

A ≈ A0e
( ln(0.5)

5730 )t

where

        A = A0e
kt The continuous growth formula.

0.5A0 = A0e
k⋅5730 Substitute the half-life for t and 0.5A0 for f(t).

      0.5 = e5730k Divide by A0.

ln(0.5) = 5730k Take the natural log of both sides.

         k =
ln(0.5)
5730 Divide by the coefficient of k.

        A = A0e
( ln(0.5)

5730 )t
Substitute for r in the continuous growth formula.



A is the amount of carbon-14 remaining
A0 is the amount of carbon-14 when the plant or animal began decaying.

This formula is derived as follows:
Equation:

To find the age of an object, we solve this equation for t :
Equation:

t =
ln( A

A0
)

−0.000121

Out of necessity, we neglect here the many details that a scientist takes into consideration when doing carbon-14
dating, and we only look at the basic formula. The ratio of carbon-14 to carbon-12 in the atmosphere is
approximately 0.0000000001%. Let r be the ratio of carbon-14 to carbon-12 in the organic artifact or fossil to be
dated, determined by a method called liquid scintillation. From the equation A ≈ A0e

−0.000121t we know the ratio
of the percentage of carbon-14 in the object we are dating to the percentage of carbon-14 in the atmosphere is 
r = A

A0
≈ e−0.000121t. We solve this equation for t, to get

Equation:

t =
ln (r)

−0.000121

Note:
Given the percentage of carbon-14 in an object, determine its age.

1. Express the given percentage of carbon-14 as an equivalent decimal, k.

2. Substitute for k in the equation t =
ln(r)

−0.000121 and solve for the age, t.

Example:
Exercise:

Problem:
Finding the Age of a Bone

A bone fragment is found that contains 20% of its original carbon-14. To the nearest year, how old is the
bone?

Solution:

        A = A0e
kt The continuous growth formula.

 0.5A0 = A0e
k⋅5730 Substitute the half-life for t and 0.5A0 for f(t).

      0.5 = e5730k Divide by A0.

ln(0.5) = 5730k Take the natural log of both sides.

         k =
ln(0.5)
5730

Divide by the coefficient of k.

        A = A0e
( ln(0.5)

5730 )t
Substitute for r in the continuous growth formula.



We substitute 20% = 0.20 for k in the equation and solve for t :
Equation:

The bone fragment is about 13,301 years old.

Analysis

The instruments that measure the percentage of carbon-14 are extremely sensitive and, as we mention above, a
scientist will need to do much more work than we did in order to be satisfied. Even so, carbon dating is only
accurate to about 1%, so this age should be given as 13,301 years ± 1% or 13,301 years ± 133 years.

Note:
Exercise:

Problem:

Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take more or
less than 230 years until only 1 milligram remains?

Solution:

less than 230 years, 229.3157 to be exact

Calculating Doubling Time

For decaying quantities, we determined how long it took for half of a substance to decay. For growing quantities,
we might want to find out how long it takes for a quantity to double. As we mentioned above, the time it takes for
a quantity to double is called the doubling time.

Given the basic exponential growth equation A = A0e
kt, doubling time can be found by solving for when the

original quantity has doubled, that is, by solving 2A0 = A0e
kt.

The formula is derived as follows:
Equation:

Thus the doubling time is
Equation:

t =
ln 2

k

t =
ln(r)

−0.000121
Use the general form of the equation.

=
ln(0.20)

−0.000121
Substitute for r.

≈ 13301 Round to the nearest year.

2A0 = A0e
kt

2 = ekt Divide by A0.

ln 2 = kt Take the natural logarithm.

t = ln 2
k

Divide by the coefficient of t.



Example:
Exercise:

Problem:
Finding a Function That Describes Exponential Growth

According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer
chip is approximately two years. Give a function that describes this behavior.

Solution:

The formula is derived as follows:
Equation:

The function is A0e
ln 2
2 t.

Note:
Exercise:

Problem:

Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer holds. Growth
has slowed to a doubling time of approximately three years. Find the new function that takes that longer
doubling time into account.

Solution:

f(t) = A0e
ln 2
3 t

Using Newton’s Law of Cooling

Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower
temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air
temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at
the temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift
of the generic exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific
formula for temperature as a function of time as an object’s temperature is equalized with the ambient temperature
Equation:

T (t) = aekt + Ts

This formula is derived as follows:
Equation:

t = ln 2
k

The doubling time formula.

2 = ln 2
k

Use a doubling time of two years.

k = ln 2
2

Multiply by k and divide by 2.

A = A0e
ln 2
2 t Substitute k into the continuous growth formula.

t



Note:
Newton’s Law of Cooling
The temperature of an object, T , in surrounding air with temperature Ts will behave according to the formula
Equation:

T (t) = Aekt + Ts

where

t is time
A is the difference between the initial temperature of the object and the surroundings
k is a constant, the continuous rate of cooling of the object

Note:
Given a set of conditions, apply Newton’s Law of Cooling.

1. Set Ts equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
2. Substitute the given values into the continuous growth formula T (t) = Aekt + Ts to find the parameters A

and k.
3. Substitute in the desired time to find the temperature or the desired temperature to find the time.

Example:
Exercise:

Problem:
Using Newton’s Law of Cooling

A cheesecake is taken out of the oven with an ideal internal temperature of 165°F, and is placed into a 35°F
refrigerator. After 10 minutes, the cheesecake has cooled to 150°F. If we must wait until the cheesecake has
cooled to 70°F before we eat it, how long will we have to wait?

Solution:

Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will
decay exponentially toward 35, following the equation
Equation:

T (t) = Aekt + 35

We know the initial temperature was 165, so T (0) = 165.
Equation:

T (t) = Abct + Ts

T (t) = Aeln(b
ct) + Ts Laws of logarithms.

T (t) = Aect ln b + Ts Laws of logarithms.

T (t) = Aekt + Ts Rename the constant c  ln  b,  calling it k.



We were given another data point, T (10) = 150, which we can use to solve for k.
Equation:

This gives us the equation for the cooling of the cheesecake: T (t) = 130e–0.0123t + 35.

Now we can solve for the time it will take for the temperature to cool to 70 degrees.
Equation:

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to 70°F.

Note:
Exercise:

Problem:

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the temperature
has risen to 45 degrees. How long will it take for the temperature to rise to 60 degrees?

Solution:

6.026 hours

Using Logistic Growth Models

Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend
to fall apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to
double the number of lines she writes each day for a month. By the end of the month, she must write over 17
billion lines, or one-half-billion pages. It is impractical, if not impossible, for anyone to write that much in such a
short period of time. Eventually, an exponential model must begin to approach some limiting value, and then the
growth is forced to slow. For this reason, it is often better to use a model with an upper bound instead of an

165 = Aek0 + 35 Substitute (0, 165).

A = 130 Solve for A.

               150 = 130ek10 + 35 Substitute (10, 150).

               115 = 130ek10 Subtract 35.

               115
130 = e10k Divide by 130.

          ln ( 115
130 ) = 10k Take the natural log of both sides.

                    k =
ln( 115

130 )
10 ≈ −0.0123 Divide by the coefficient of k.

70 = 130e−0.0123t + 35 Substitute in 70 for T (t).

35 = 130e−0.0123t Subtract 35.
35
130

= e−0.0123t Divide by 130.

ln( 35
130

) = −0.0123t Take the natural log of both sides

t =
ln( 35

130 )

−0.0123
≈ 106.68 Divide by the coefficient of t.



exponential growth model, though the exponential growth model is still useful over a short term, before
approaching the limiting value.

The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the output
approaches the model’s upper bound, called the carrying capacity. For constants a, b, and c, the logistic growth
of a population over time x is represented by the model
Equation:

f(x) =
c

1 + ae−bx

The graph in [link] shows how the growth rate changes over time. The graph increases from left to right, but the
growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of increase
decreases.

Note:
Logistic Growth
The logistic growth model is
Equation:

f(x) =
c

1 + ae−bx

where

c
1+a

is the initial value
c is the carrying capacity, or limiting value
b is a constant determined by the rate of growth.

Example:
Exercise:

Problem:



Using the Logistic-Growth Model

An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The more
people who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more
rapidly it spreads. These two factors make the logistic model a good one to study the spread of
communicable diseases. And, clearly, there is a maximum value for the number of people infected: the entire
population.

For example, at time t = 0 there is one person in a community of 1,000 people who has the flu. So, in that
community, at most 1,000 people can have the flu. Researchers find that for this particular strain of the flu,
the logistic growth constant is b = 0.6030.Estimate the number of people in this community who will have
had this flu after ten days. Predict how many people in this community will have had this flu after a long
period of time has passed.

Solution:

We substitute the given data into the logistic growth model
Equation:

f(x) =
c

1 + ae−bx

Because at most 1,000 people, the entire population of the community, can get the flu, we know the limiting
value is c = 1000.To find a,we use the formula that the number of cases at time t = 0 is c

1+a
= 1, from

which it follows that a = 999.This model predicts that, after ten days, the number of people who have had
the flu is f(x) = 1000

1+999e−0.6030x ≈ 293.8.Because the actual number must be a whole number (a person has
either had the flu or not) we round to 294. In the long term, the number of people who will contract the flu is
the limiting value, c = 1000.

Analysis

Remember that, because we are dealing with a virus, we cannot predict with certainty the number of people
infected. The model only approximates the number of people infected and will not give us exact or actual values.

The graph in [link] gives a good picture of how this model fits the data.



Note:
Exercise:

Problem: Using the model in [link], estimate the number of cases of flu on day 15.

Solution:

895 cases on day 15

Choosing an Appropriate Model for Data

Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model
for the raw data we have. Many factors influence the choice of a mathematical model, among which are
experience, scientific laws, and patterns in the data itself. Not all data can be described by elementary functions.
Sometimes, a function is chosen that approximates the data over a given interval. For instance, suppose data were
gathered on the number of homes bought in the United States from the years 1960 to 2013. After plotting these
data in a scatter plot, we notice that the shape of the data from the years 2000 to 2013 follow a logarithmic curve.
We could restrict the interval from 2000 to 2010, apply regression analysis using a logarithmic model, and use it to
predict the number of home buyers for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions,
and logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a straight line, a
linear model may be best. If the data is non-linear, we often consider an exponential or logarithmic model, though
other models, such as quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is
called the concavity. If we draw a line between two data points, and all (or most) of the data between those two
points lies above that line, we say the curve is concave down. We can think of it as a bowl that bends downward
and therefore cannot hold water. If all (or most) of the data between those two points lies below the line, we say
the curve is concave up. In this case, we can think of a bowl that bends upward and can therefore hold water. An
exponential curve, whether rising or falling, whether representing growth or decay, is always concave up away
from its horizontal asymptote. A logarithmic curve is always concave away from its vertical asymptote. In the case
of positive data, which is the most common case, an exponential curve is always concave up, and a logarithmic
curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain
point, called a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find
the parameters. We reduce round-off error by choosing points as far apart as possible.

Example:
Exercise:

Problem:
Choosing a Mathematical Model

The graph of f(x) = 1000
1+999e−0.6030x



Does a linear, exponential, logarithmic, or logistic model best fit the values listed in [link]? Find the model,
and use a graph to check your choice.

x 1 2 3 4 5 6 7 8 9

y 0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Solution:

First, plot the data on a graph as in [link]. For the purpose of graphing, round the data to two significant
digits.

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any two
of the points, most or all of the points between those two points lie above the line, so the graph is concave
down, suggesting a logarithmic model. We can try y = a ln(bx). Plugging in the first point, (1,0), gives
0 = a ln b. We reject the case that a = 0 (if it were, all outputs would be 0), so we know ln(b) = 0.Thus
b = 1 and y = a ln (x). Next we can use the point (9,4.394) to solve for a :
Equation:

Because a = 4.394
ln(9)

≈ 2,an appropriate model for the data is y = 2 ln (x).

To check the accuracy of the model, we graph the function together with the given points as in [link].

y = a ln(x)

4.394 = a ln(9)

a = 4.394
ln(9)



We can conclude that the model is a good fit to the data.

Compare [link] to the graph of y = ln (x2) shown in [link].

The graph of y = 2 lnx.

The graph of y = ln (x2)



The graphs appear to be identical when x > 0.A quick check confirms this conclusion:
y = ln (x2) = 2 ln (x) for x > 0.

However, if x < 0, the graph of y = ln (x2) includes a “extra” branch, as shown in [link]. This occurs
because, while y = 2 ln (x) cannot have negative values in the domain (as such values would force the
argument to be negative), the function y = ln (x2) can have negative domain values.

Note:
Exercise:

Problem: Does a linear, exponential, or logarithmic model best fit the data in [link]? Find the model.

x 1 2 3 4 5 6 7 8 9

y 3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Solution:

Exponential. y = 2e0.5x.

Expressing an Exponential Model in Base e

While powers and logarithms of any base can be used in modeling, the two most common bases are 10 and e. In
science and mathematics, the base e is often preferred. We can use laws of exponents and laws of logarithms to
change any base to base e.

Note:
Given a model with the form y = abx, change it to the form y = A0e

kx.

1. Rewrite y = abx as y = aeln(b
x).

2. Use the power rule of logarithms to rewrite y as y = aex ln(b) = aeln(b)x.
3. Note that a = A0 and k = ln (b) in the equation y = A0e

kx.



Example:
Exercise:

Problem:
Changing to base e

Change the function y = 2.5(3.1)x so that this same function is written in the form y = A0e
kx.

Solution:

The formula is derived as follows
Equation:

Note:
Exercise:

Problem: Change the function y = 3(0.5)x to one having e as the base.

Solution:

y = 3e(ln 0.5)x

Note:
Access these online resources for additional instruction and practice with exponential and logarithmic models.

Logarithm Application – pH
Exponential Model – Age Using Half-Life
Newton’s Law of Cooling
Exponential Growth Given Doubling Time
Exponential Growth – Find Initial Amount Given Doubling Time

Key Equations

Half-life formula If A = A0e
kt, k < 0, the half-life is t = −

ln(2)
k

.

Carbon-14 dating
t =

ln( A
A0

)

−0.000121 .  

y = 2.5(3.1)x

= 2.5eln(3.1
x) Insert exponential and its inverse.

= 2.5ex ln 3.1 Laws of logs.

= 2.5e(ln 3.1)x Commutative law of multiplication

http://openstaxcollege.org/l/logph
http://openstaxcollege.org/l/expmodelhalf
http://openstaxcollege.org/l/newtoncooling
http://openstaxcollege.org/l/expgrowthdbl
http://openstaxcollege.org/l/initialdouble


A0  is the amount of carbon-14 when the plant or animal died  
A is the amount of carbon-14 remaining today  
t is the age of the fossil in years

Doubling time
formula

If A = A0e
kt, k > 0, the doubling time is t = ln 2

k

Newton’s Law of
Cooling

T (t) = Aekt + Ts, where Ts is the ambient temperature, A = T (0) − Ts, and k is
the continuous rate of cooling.

Key Concepts

The basic exponential function is f(x) = abx. If b > 1,we have exponential growth; if 0 < b < 1, we have
exponential decay.
We can also write this formula in terms of continuous growth as A = A0e

kx, where A0 is the starting value. If
A0 is positive, then we have exponential growth when k > 0 and exponential decay when k < 0. See [link].
In general, we solve problems involving exponential growth or decay in two steps. First, we set up a model
and use the model to find the parameters. Then we use the formula with these parameters to predict growth
and decay. See [link].
We can find the age, t, of an organic artifact by measuring the amount, k, of carbon-14 remaining in the
artifact and using the formula t =

ln(k)
−0.000121 to solve for t. See [link].

Given a substance’s doubling time or half-time, we can find a function that represents its exponential growth
or decay. See [link].
We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired
temperature, or to find what temperature an object will be after a given time. See [link].
We can use logistic growth functions to model real-world situations where the rate of growth changes over
time, such as population growth, spread of disease, and spread of rumors. See [link].
We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential,
logarithmic, and logistic graphs help us to develop models that best fit our data. See [link].
Any exponential function with the form y = abx can be rewritten as an equivalent exponential function with
the form y = A0e

kx where k = ln b. See [link].

Section Exercises

Verbal

Exercise:

Problem:

With what kind of exponential model would half-life be associated? What role does half-life play in these
models?

Solution:

Half-life is a measure of decay and is thus associated with exponential decay models. The half-life of a
substance or quantity is the amount of time it takes for half of the initial amount of that substance or quantity
to decay.

Exercise:

Problem:

What is carbon dating? Why does it work? Give an example in which carbon dating would be useful.

Exercise:



Problem:

With what kind of exponential model would doubling time be associated? What role does doubling time play
in these models?

Solution:

Doubling time is a measure of growth and is thus associated with exponential growth models. The doubling
time of a substance or quantity is the amount of time it takes for the initial amount of that substance or
quantity to double in size.

Exercise:

Problem:

Define Newton’s Law of Cooling. Then name at least three real-world situations where Newton’s Law of
Cooling would be applied.

Exercise:

Problem:What is an order of magnitude? Why are orders of magnitude useful? Give an example to explain.

Solution:

An order of magnitude is the nearest power of ten by which a quantity exponentially grows. It is also an
approximate position on a logarithmic scale; Sample response: Orders of magnitude are useful when making
comparisons between numbers that differ by a great amount. For example, the mass of Saturn is 95 times
greater than the mass of Earth. This is the same as saying that the mass of Saturn is about 102 times, or 2
orders of magnitude greater, than the mass of Earth.

Numeric

Exercise:

Problem:

The temperature of an object in degrees Fahrenheit after t minutes is represented by the equation
T (t) = 68e−0.0174t + 72.To the nearest degree, what is the temperature of the object after one and a half
hours?

For the following exercises, use the logistic growth model f(x) = 150
1+8e−2x .

Exercise:

Problem:Find and interpret f(0). Round to the nearest tenth.

Solution:

f(0) ≈ 16.7; The amount initially present is about 16.7 units.

Exercise:

Problem:Find and interpret f(4). Round to the nearest tenth.

Exercise:

Problem:Find the carrying capacity.



Solution:

150

Exercise:

Problem:Graph the model.

Exercise:

Problem:

Determine whether the data from the table could best be represented as a function that is linear, exponential,
or logarithmic. Then write a formula for a model that represents the data.

Exercise:

Problem:

x f(x)

–2 0.694

–1 0.833

0 1

1 1.2

2 1.44

3 1.728

4 2.074

5 2.488

Solution:

exponential; f(x) = 1.2x

Exercise:

Problem: Rewrite f(x) = 1.68(0.65)x as an exponential equation with base e to five significant digits.

Technology

For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter
plots. Determine whether the data from the table could represent a function that is linear, exponential, or
logarithmic.



Exercise:

Problem:

x f(x)

1 2

2 4.079

3 5.296

4 6.159

5 6.828

6 7.375

7 7.838

8 8.238

9 8.592

10 8.908

Solution:

logarithmic

Exercise:

Problem:



x f(x)

1 2.4

2 2.88

3 3.456

4 4.147

5 4.977

6 5.972

7 7.166

8 8.6

9 10.32

10 12.383

Exercise:

Problem:

x f(x)

4 9.429

5 9.972

6 10.415

7 10.79

8 11.115

9 11.401

10 11.657

11 11.889

12 12.101

13 12.295

Solution:



logarithmic

Exercise:

Problem:

x f(x)

1.25 5.75

2.25 8.75

3.56 12.68

4.2 14.6

5.65 18.95

6.75 22.25

7.25 23.75

8.6 27.8

9.25 29.75



10.5 33.5

For the following exercises, use a graphing calculator and this scenario: the population of a fish farm in t years is
modeled by the equation P (t) = 1000

1+9e−0.6t .

Exercise:

Problem:Graph the function.

Solution:

Exercise:

Problem:What is the initial population of fish?

Exercise:

Problem:To the nearest tenth, what is the doubling time for the fish population?

Solution:

about 1.4 years

Exercise:

Problem:To the nearest whole number, what will the fish population be after 2 years?

Exercise:

Problem:To the nearest tenth, how long will it take for the population to reach 900?

Solution:

about 7.3 years

Exercise:



Problem:What is the carrying capacity for the fish population? Justify your answer using the graph of P .

Extensions

Exercise:

Problem:

A substance has a half-life of 2.045 minutes. If the initial amount of the substance was 132.8 grams, how
many half-lives will have passed before the substance decays to 8.3 grams? What is the total time of decay?

Solution:

4 half-lives; 8.18minutes

Exercise:

Problem:

The formula for an increasing population is given by P(t) = P0e
rt where P0 is the initial population and

r > 0.Derive a general formula for the time t it takes for the population to increase by a factor of M.

Exercise:

Problem:

Recall the formula for calculating the magnitude of an earthquake, M = 2
3 log(

S
S0
). Show each step for

solving this equation algebraically for the seismic moment S.

Solution:

Exercise:

Problem:

What is the y-intercept of the logistic growth model y = c
1+ae−rx ? Show the steps for calculation. What does

this point tell us about the population?

Exercise:

Problem:Prove that bx = ex ln(b) for positive b ≠ 1.

Solution:

Let y = bx for some non-negative real number b such that b ≠ 1.Then,

          M = 2
3
log( S

S0
)

log( S
S0
) = 3

2
M

         S
S0

= 10
3M
2

           S = S010
3M
2



Real-World Applications

For the following exercises, use this scenario: A doctor prescribes 125 milligrams of a therapeutic drug that decays
by about 30% each hour.
Exercise:

Problem: To the nearest hour, what is the half-life of the drug?

Exercise:

Problem:

Write an exponential model representing the amount of the drug remaining in the patient’s system after t
hours. Then use the formula to find the amount of the drug that would remain in the patient’s system after 3
hours. Round to the nearest milligram.

Solution:

A = 125e(−0.3567t);A ≈ 43mg

Exercise:

Problem:

Using the model found in the previous exercise, find f (10) and interpret the result. Round to the nearest
hundredth.

For the following exercises, use this scenario: A tumor is injected with 0.5 grams of Iodine-125, which has a decay
rate of 1.15% per day.
Exercise:

Problem:To the nearest day, how long will it take for half of the Iodine-125 to decay?

Solution:

about 60 days

Exercise:

Problem:

Write an exponential model representing the amount of Iodine-125 remaining in the tumor after t days. Then
use the formula to find the amount of Iodine-125 that would remain in the tumor after 60 days. Round to the
nearest tenth of a gram.

Exercise:

Problem:

A scientist begins with 250 grams of a radioactive substance. After 250minutes, the sample has decayed to 32
grams. Rounding to five significant digits, write an exponential equation representing this situation. To the
nearest minute, what is the half-life of this substance?

ln(y) = ln(bx)

ln(y) = x ln(b)

eln(y) = ex ln(b)

      y = ex ln(b)



Solution:

f(t) = 250e(−0.00914t); half-life: about 76minutes

Exercise:

Problem:

The half-life of Radium-226 is 1590 years. What is the annual decay rate? Express the decimal result to four
significant digits and the percentage to two significant digits.

Exercise:

Problem:

The half-life of Erbium-165 is 10.4 hours. What is the hourly decay rate? Express the decimal result to four
significant digits and the percentage to two significant digits.

Solution:

r ≈ −0.0667, So the hourly decay rate is about 6.67%

Exercise:

Problem:

A wooden artifact from an archeological dig contains 60 percent of the carbon-14 that is present in living
trees. To the nearest year, about how many years old is the artifact? (The half-life of carbon-14 is 5730 years.)

Exercise:

Problem:

A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial
population count was 1350 bacteria. Rounding to five significant digits, write an exponential equation
representing this situation. To the nearest whole number, what is the population size after 3 hours?

Solution:

f(t) = 1350e(0.03466t); after 3 hours: P(180) ≈ 691, 200

For the following exercises, use this scenario: A biologist recorded a count of 360 bacteria present in a culture after
5minutes and 1000 bacteria present after 20minutes.
Exercise:

Problem:To the nearest whole number, what was the initial population in the culture?

Exercise:

Problem:

Rounding to six significant digits, write an exponential equation representing this situation. To the nearest
minute, how long did it take the population to double?

Solution:

f(t) = 256e(0.068110t); doubling time: about 10minutes

For the following exercises, use this scenario: A pot of boiling soup with an internal temperature of 100°
Fahrenheit was taken off the stove to cool in a 69° F room. After fifteen minutes, the internal temperature of the
soup was 95° F.



Exercise:

Problem:Use Newton’s Law of Cooling to write a formula that models this situation.

Exercise:

Problem:To the nearest minute, how long will it take the soup to cool to 80° F?

Solution:

about 88minutes

Exercise:

Problem:To the nearest degree, what will the temperature be after 2 and a half hours?

For the following exercises, use this scenario: A turkey is taken out of the oven with an internal temperature of
165°F  and is allowed to cool in a 75°F room. After half an hour, the internal temperature of the turkey is 145°F.
Exercise:

Problem:Write a formula that models this situation.

Solution:

T (t) = 90e(−0.008377t) + 75, where t is in minutes.

Exercise:

Problem:To the nearest degree, what will the temperature be after 50 minutes?

Exercise:

Problem:To the nearest minute, how long will it take the turkey to cool to 110° F?

Solution:

about 113minutes

For the following exercises, find the value of the number shown on each logarithmic scale. Round all answers to
the nearest thousandth.
Exercise:

Problem:

Exercise:

Problem:



Solution:

log (x) = 1.5; x ≈ 31.623

Exercise:

Problem:

Plot each set of approximate values of intensity of sounds on a logarithmic scale: Whisper: 10−10  W
m2 ,

Vacuum: 10−4 W

m2 ,Jet: 102  W

m2

Exercise:

Problem:

Recall the formula for calculating the magnitude of an earthquake, M = 2
3
log( S

S0
). One earthquake has

magnitude 3. 9 on the MMS scale. If a second earthquake has 750 times as much energy as the first, find the
magnitude of the second quake. Round to the nearest hundredth.

Solution:

MMS magnitude: 5.82

For the following exercises, use this scenario: The equation N (t) = 500
1+49e−0.7t models the number of people in a

town who have heard a rumor after t days.
Exercise:

Problem:How many people started the rumor?

Exercise:

Problem:To the nearest whole number, how many people will have heard the rumor after 3 days?

Solution:

N(3) ≈ 71

Exercise:

Problem:As t increases without bound, what value does N (t) approach? Interpret your answer.

For the following exercise, choose the correct answer choice.
Exercise:

Problem:

A doctor and injects a patient with 13milligrams of radioactive dye that decays exponentially. After 12
minutes, there are 4.75milligrams of dye remaining in the patient’s system. Which is an appropriate model
for this situation?

A. f (t) = 13(0.0805)t

B. f (t) = 13e0.9195t

C. f(t) = 13e(−0.0839t)

D. f (t) = 4.75
1+13e−0.83925t

Solution:



C

Glossary

carrying capacity
in a logistic model, the limiting value of the output

doubling time
the time it takes for a quantity to double

half-life
the length of time it takes for a substance to exponentially decay to half of its original quantity

logistic growth model
a function of the form f(x) = c

1+ae−bx where c
1+a

is the initial value, c is the carrying capacity, or limiting
value, and b is a constant determined by the rate of growth

Newton’s Law of Cooling
the scientific formula for temperature as a function of time as an object’s temperature is equalized with the
ambient temperature

order of magnitude
the power of ten, when a number is expressed in scientific notation, with one non-zero digit to the left of the
decimal



Basic Functions and Identities

Graphs of the Parent Functions



Graphs of the Trigonometric Functions





Trigonometric Identities

Pythagorean
Identities

Even-Odd
Identities

Cofunction
Identities

cos2 t + sin2 t = 1

1 + tan2 t = sec2 t

1 + cot2 t = csc2 t

cos (− t) = cos t

sec (− t) = sec t

sin (− t) = − sin t

tan (− t) = − tan t

csc (− t) = − csc t

cot (− t) = − cot t



Fundamental
Identities

Sum and
Difference
Identities

Double-Angle
Formulas

Half-Angle
Formulas

cos t = sin ( π
2 − t)

sin t = cos ( π
2 − t)

tan t = cot ( π
2 − t)

cot t = tan ( π
2 − t)

sec t = csc ( π
2 − t)

csc t = sec ( π
2 − t)

tan t = sin t
cos t

sec t = 1
cos t

csc t = 1
sin t

cot t = 1
tan t

= cos t
sin t

cos(α + β) = cos α cos β − sin α sin β

cos(α − β) = cos α cos β + sin α sin β

sin(α + β) = sin α cos β + cos α sin β

sin(α − β) = sin α cos β − cos α sin β

tan(α + β) = tan α+tan β

1−tan α tan β

tan(α − β) = tan α−tan β

1+tan α tan β

sin(2θ) = 2 sin θ cos θ

cos(2θ) = cos2θ − sin2θ

cos(2θ) = 1 − 2 sin2θ

cos(2θ) = 2 cos2θ − 1

tan(2θ) = 2 tan θ

1−tan2θ



Reduction
Formulas

Product-to-Sum
Formulas

Sum-to-Product
Formulas

Law of Sines

Law of Cosines

sin α
2

= ±√ 1−cos α
2

cos α
2

= ±√ 1+cos α
2

tan α
2 = ±√ 1−cos α

1+cos α

tan α
2 = sin α

1+cos α

tan α
2 = 1−cos α

sin α

sin2 θ =
1−cos(2θ)

2

cos2 θ =
1+cos(2θ)

2

tan2 θ =
1−cos(2θ)

1+cos(2θ)

cos α cos β = 1
2 [cos(α − β) + cos(α + β)]

sin α cos β = 1
2 [sin(α + β) + sin(α − β)]

sin α sin β = 1
2 [cos(α − β) − cos(α + β)]

cos α sin β = 1
2 [sin(α + β) − sin(α − β)]

sin α + sin β = 2 sin( α+β

2 ) cos( α−β

2 )

sin α − sin β = 2 sin( α−β

2 ) cos( α+β

2 )

cos α − cos β = −2 sin( α+β

2 ) sin( α−β

2 )

cos α + cos β = 2 cos( α+β

2 ) cos( α−β

2 )

sin α
a

= sin β

b
= sin γ

c

a
sin α

= b
sin β

= c
sin γ



a2 = b2 + c2 − 2bc cos α

b2 = a2 + c2 − 2ac cos β

c2 = a2 + b2 − 2ab cos γ
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